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Electron transport along open field lines in the diverted scrape-off layer of a tokamak is studied
numerically via a kinetic Fokker–Planck approach. The method allows calculation of the
distribution function in a situation where large parallel temperature gradients are maintained by
collisional relaxation and, at the same time, superthermal electrons stream freely from the midplane
of the plasma to the target/sheath boundary. The method also allows calculation of the
self-consistent electrostatic field associated with parallel gradients in the distribution function, as
well as the potential drop across the target/sheath boundary, where the latter is calculated to enforce
appropriate boundary conditions at the target, although the sheath itself is not resolved. The kinetic
results are compared to classical fluid results for the case of a simple~nonradiative! divertor. The
kinetic solutions exhibit an enhanced superthermal electron population in the vicinity of the target,
which results in a larger sheath energy transmission factor, a lower bulk electron temperature, and
a smaller sheath potential drop. The sheath potential largely determines the energy with which ions
impact the target, thereby affecting the rate of target erosion. Ionization rates and radiation rates
from impurities in the vicinity of the target also depend strongly on the local electron temperature
and can be sensitive to superthermal tails. ©1996 American Institute of Physics.
@S1070-664X~96!03710-X#

I. INTRODUCTION

Successful operation of a tokamak fusion device requires
maintaining a clean hot plasma core, while minimizing ero-
sion of the divertor target. This depends critically on plasma
parameters in the scrape-off layer~SOL!, where a large heat
flux is carried along open magnetic field lines to the divertor.
A substantial portion of this heat flux is carried by electrons,
making electron heat conduction an important divertor phys-
ics issue.

It is well known that parallel electron heat transport in a
magnetized plasma is sensitive to long mean free path effects
that are outside the scope of conventional fluid theory. For
classical electron thermal conductivity to be valid, the elec-
tron mean free path~MFP! must be suitably small compared
to the temperature gradient scale length.1 In the long MFP
regime, early numerical work showed that the conductive
heat flux remains limited to a fraction of the free-streaming
flux neTeve .

2 Based on heuristic arguments and numerical
solutions, researchers attempted to construct a nonlocal
model linking the heat flux to the temperature profile.3 This
line of research was later extended by more detailed analysis
of the Fokker–Planck equation.4–8 In all of this work, the
breakdown of conventional fluid theory occurs even while
the MFP ofthermalelectrons is short compared to the tem-
perature gradient scale length. This is because most of the
heat flux is carried byenergeticelectrons whose velocities
are in the range 3ve @whereve5(Te/me)

1/2#. These particles

have a MFP roughly 80 times that of thermal particles, i.e.,
the MFP scales like (v/ve)

4, thereby allowing superthermal
electrons to free stream over a substantial portion of the tem-
perature gradient. For typical parameters in the SOL, this
results in a competition between collisions and free stream-
ing. Bulk collisions are responsible for maintaining the tem-
perature gradient, while free streaming replenishes the target
region with energetic electrons from the midplane. The phys-
ics of the target/sheath region determines the boundary value
of the electron temperature for a given heat flux and particle
flux. This boundary physics is sensitive to the influx of hot
electrons from the midplane of the plasma.

Research in this area has generally relied on test-particle
Monte Carlo simulations.9,10 The drawback of this method is
that the self-consistent temperature profile remains undeter-
mined. While the test-particle method seeks to characterize
the relation between the heat flux and the temperature pro-
file, it does so for an artificial state of the system, without
satisfying the appropriate boundary conditions. As an alter-
native to this method, self-consistent solutions have been ob-
tained with a multispecies particle-in-cell code,11,12but code
runs are expensive and have typically covered only a few
centimeters of field line in front of the target, whereas the
region of interest typically extends for tens of meters. The
goal of this paper is to present a set of self-consistent nu-
merical solutions of the electron Fokker–Planck equation,
extending along the SOL from the midplane, into the di-
vertor, and to the target/sheath boundary. To do this, we have
developed the Fokker–Planck edge transport code~FPET!, a
fully kinetic parallel transport code which solves for
f (v' ,v i ,z), the gyroaveraged distribution function along a
magnetic field line. Although the numerical techniques em-
ployed here are a straightforward extension of earlier work,13

we describe a new procedure for implementing quasineutral-
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ity, thereby allowing calculation of the self-consistent elec-
tric field.

Classical fluid theory for a simple~nonradiative! divertor
is reviewed in Sec. II. The kinetic approach is outlined in
Sec. III. Details of the numerical method are discussed in
Sec. IV. The results, comparing kinetic and fluid solutions,
are presented in Sec. V. Conclusions are given in Sec. VI.

II. CLASSICAL FLUID APPROACH

Here we discuss conventional fluid theory for parallel
transport in a simple divertor. In this approach, one assumes
the classical relation for parallel heat conduction together
with an appropriate target/sheath boundary condition. The
sheath region is treated as a boundary layer wherein the dis-
tribution function is assumed to be Maxwellian. Results ob-
tained in this section will be referred to as ‘‘classical’’ to
distinguish them from the kinetic results obtained in subse-
quent sections. Ifqe denotes the electron heat flux parallel to
the magnetic field andk denotes the plasma thermal conduc-
tivity, then the classical relation forTe is

qe52k“ iTe . ~1!

Braginskii gives k53.16 (neteTe/me) where
te53(me)

1/2Te
3/2/@4~2p!1/2 ln Le4ne# is the electron colli-

sion time14 andZi is assumed to be unity. In the absence of
sources and sinks and neglecting any convective flux, the
steady-state solution of the heat equation requires constant
qe . Takingqe constant and neglecting variations in lnL, Eq.
~1! is easily integrated to obtain

Te5Te0~12z/D !2/7, ~2!

wherez is the distance along the magnetic field line mea-
sured upstream~negative! from the target atz50. Here
D5k0Te0/(3.5qe), whereTe0 andk0 are the electron tem-
perature and thermal conductivity evaluated at the target/
sheath boundary. The classical solution thus reduces to a set
of profiles whose steepness is controlled by a single param-
eterD.

Equation~1! can be rewritten in the following form:

qe /~neTeve!53.16le /LT , ~3!

whereLT[TeudTe/dzu
21 is the gradient length of the tem-

perature profile, le5teve is the thermal MFP, and
ve5(Te/me)

1/2 is the thermal velocity. In Ref. 8, the break-
down of Eq. ~1! is shown to occur forle*5.331022LT ,
where the numerical factor of 5.3 accounts for differences in
the definition of MFP. Substituting this constraint into Eq.
~3! givesqe/(neTeve)&0.17 as the valid regime for classical
fluid theory. In Ref. 9, Monte Carlo solutions of the Fokker–
Planck equation show the breakdown of Eq.~3! and the pres-
ence of a flux limit, wherebyqe/(neTeve)&Cfl , with Cfl a
numerical coefficient typically in the range of 0.1–0.2.

At this stage arbitrary collisionality regimes are possible,
since for any given temperature profile, the density can be
decreased, thereby increasing the MFP until Eq.~3! is vio-
lated. In fact, however, proper treatment of the target/sheath
boundary results in an additional constraint which limits the
collisionality. Assuming that the target floats electrostati-
cally, at steady state the electron and ion fluxes through the

sheath must be balanced, i.e., ambipolar. Furthermore, since
the Bohm sheath criterion limits the ion flow velocity to be
roughly Mach 1 at the entrance to the sheath~see the review
in Ref. 15!, one obtains a constraint on the electron flux. In
particular, the electron flux through the sheath is

Ge05Mne0@~Te01Ti0!/mi #
1/2, ~4!

where all plasma parameters are evaluated at the entrance to
the sheath andM is a numerical coefficient of order unity.
Throughout this paper, we ignore the length scale of the
sheath~both the Debye sheath, as well as the ion gyrosheath!
and instead we impose an appropriate boundary condition at
z50. Assuming a Maxwellian distribution at the target/
sheath boundary gives the classical result

f52 ln@Ge0~2p!1/2/~ne0ve0!#, ~5!

wheref[eDFsh/Te0 is the normalized sheath potential and
ve05(Te0/me)

1/2. This follows from Eq.~4! by computing
the integral

Ge05E 2pv' dv'E
s

`

dv i v i f e0 , ~6!

where f e0 is the electron distribution at the target/sheath
boundary,s5~2eDFsh/me!

1/2, and all electrons withv i,s
are reflected by the sheath potential. In the same fashion, we
may also compute the electron heat flux through the sheath,
i.e.,

qe05E 2pv' dv'E
s

`

dv i v iSmev
2

2 D f e0 . ~7!

It is convenient to define the sheath energy transmission fac-
tor

d[qe0 /~Ge0Te0!. ~8!

Once again, assuming a Maxwellian distribution in Eq.~7!,
one obtains the classical result

d5f12. ~9!

In Eq. ~4! we assume deuterium ions withTi05Te0 and
M51. Now substituting Eq.~4! into Eq. ~5!, the classical
results aref52.8 andd54.8.

Further comment is needed on our implementation of the
Bohm criterion@Eq. ~4!# and our treatment of ions. The goal
of this paper is to present a kinetic model for electrons and to
compare the results of this model with classical fluid theory
in a consistent fashion. Since the ions are not treated in de-
tail, the precise value of the coefficientM in Eq. ~4! cannot
be determined, therefore, we takeM51, a reasonable value.
It should be noted, however, that the magnetic field in a
divertor configuration generally intersects the target at an
oblique angle, modifying the sheath physics and the value of
M , as discussed, for example, in Refs. 16–19. Here we are
effectively compressing both the Debye sheath and the ion
gyrosheath into one boundary condition that requires speci-
fying the electron flux to the target. Furthermore, we assume
that there is a strong ionization source of electrons directly in
front of the target/sheath boundary, as in the case of a high-
recycling divertor. In this case, the loss of hot electrons to
the target is compensated by the birth of cold electrons in the
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ionization layer. This allows for a relatively small particle
flux upstream, while maintaining a large flux through the
sheath, as necessary to satisfy the Bohm criterion. A small
convective flux is also consistent with our assumption that
the conductive heat fluxqe is constant. The ionization layer,
which is typically narrow compared to the temperature gra-
dient length, can be treated as part of the target/sheath
boundary condition. We assume that the particle flux is zero
throughout the region of interest and apply Eq.~4! as a
boundary condition, thereby setting the value ofGe0 in Eq.
~6!. Assuming thatf e0 is Maxwellian in Eq.~6!, one may
calculateDFsh and, in particular, one arrives at the classical
result given by Eq.~5!.

To see how the sheath boundary condition fixes the elec-
tron collisionality, simply combine the definition ofd with
Eq. ~4! to obtain

@qe /~neTeve!#05d@~11Ti0 /Te0!me /mi #
1/2. ~10!

Substituting this into Eq.~3! gives the collisionality regime.
Assuming deuterium ions withTi0;Te0 andd;4.8, the re-
sult is [qe/(neTeve)] 0;0.1, which is marginally in the clas-
sical fluid regime. Furthermore, for the typical case of nearly
constant pressure along the field line, the quantity
qe/(neTeve) is largest at the target/sheath boundary, decreas-
ing like Te

21/2 as one progresses upstream. Hence, the lowest
collisionality regime is directly in front of the target.

Specifying the density at the target/sheath boundaryne0
and the heat fluxqe , one may use the above equations to
determine the electron temperature, i.e., Eq.~10! givesTe0
and ~2! gives the entire profile. Consider the following ex-
ample. Takingqe5100 MW/m2 and ne05231020 m23, to-
gether withd54.8, givesTe0516 eV and an upstream tem-
perature ofTeu574 eV at z5230 m. These parameters
are representative of a DIII-D high-confinement mode
~H-mode!20 in which case the midplane of the flux surface is
about 30 m upstream of the divertor target. Figure 1 shows
the relevant physical length scales at various distances from
the target/sheath boundary. Here the energy-dependent MFP
is defined asle(v/ve)

4 and is shown for several different
values of (v/ve). The local gradient lengthLT is also shown
for comparison; as can be seen, only the most energetic elec-
trons ~v/ve*2.7! have a MFP which exceeds the gradient
length. However, the MFP can exceed the connection length
to the target, even for moderate energy electrons; for ex-
ample, electrons withv/ve52 are shown to be within a MFP
of the target for the first 10 m; whereas electrons with
v/ve52.25 are within a MFP for the entire 30 m. It will be
shown in Sec. V that the electron distribution function be-
comes non-Maxwellian in the vicinity of the target, where
the MFP is comparable to the connection length.

III. KINETIC FOKKER–PLANCK APPROACH

The kinetic approach is to solve the Fokker–Planck
equation for the electron distribution functionf e(v' ,v i ,z)
along the magnetic field line. Heref e is actually the gyroav-
eraged distribution function,v' and v i are the usual cylin-
drical coordinates in velocity space, andz is the distance
along the field line. The Fokker–Planck equation forf e is

S ]

]t
1v i

]

]z
1Ei

]

]v i
D f e5C~ f e!1S, ~11!

whereC( f e) is the Coulomb collision operator andS repre-
sents any sources, or sinks. HereC( f e) refers to the full
nonlinear collision operator~as in Ref. 21!, gyro-averaged
and with ions taken as a fixed Maxwellian. SinceEi(z) is
generally unknown, an additional equation is needed. Pos-
sible methods of determiningEi include solving Poisson’s
equation, imposing quasineutrality, or prescribing some
closed form relation betweenEi and the moments off e .

Since the precise structure of the Debye sheath is not of
interest here, we impose quasineutrality, together with an
appropriate target/sheath boundary condition to determine
DFsh. Assuming that the electrical currentJi is known, the
relation

Ji5E d3vv ie~Zi f i2 f e!, ~12!

serves as a constraint onf e which can be satisfied by adjust-
ing Ei(z) in Eq. ~11!. If the ion flux and the electrical current
are constant~in space and time!, then Eq.~12! reduces to a
constant flux condition onf e , thereby maintaining the initial
density profile throughout the time evolution of Eq.~11!. For
simplicity, we assume thatJi is zero. More generally, the
divertor target may be grounded, or biased to drive current
through the SOL, and, in addition, small eddy currents may
exist which allowJi to vary along the field line. As discussed
in Sec. II, we assume there is a source flux of cold electrons
due to ionization at the target/sheath boundary. This compen-
sates for the loss of electrons to the target, allowing the over-
all particle flux to remain small. Formally constrainingf e to
have zero particle flux determines the value ofEi(z) in Eq.
~11!.

FIG. 1. Various length scales vs distance from the target/sheath boundary.
The temperature profile is calculated via the fluid model in Sec. II, assuming
the following two parametersqe5100 MW/m2 andne05231020 m23. The
density profile assumes constant pressure. Here the energy-dependent mean
free path~MFP! is defined asle(v/ve)

4 and is shown for various normal-
ized velocities,v/ve51.75, 2, 2.25, and 3. Electrons withv/ve*2 are within
one MFP of the target. The local temperature gradient lengthLT is also
shown for comparison. Only the most energetic electrons,v/ve*2.7, have a
MFP which exceeds the gradient length.
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Appropriate boundary conditions must be imposed at
both ends of the field line. At the target/sheath boundary,
electrons withv i.~2eDFsh/me!

1/2 are absorbed by the tar-
get, otherwise they are reflected. The value ofDFsh is calcu-
lated to maintain a prescribed flux of high energy electrons
to the target, as set by the Bohm criterion in Eq.~4!, so as to
be completely consistent with the classical fluid approach
outlined in Sec. II. This flux is balanced by the source of
cold electrons of the target. At some specified location up-
stream from the target, the distribution function of incoming
electrons~going toward the target! is fixed to be Maxwellian,
thereby setting an effective upstream temperature. Note, the
distribution of outgoing electrons at this same location up-
stream is not fixed, but is calculated as part of the solution.
Although the upstream boundary condition appears some-
what arbitrary, it still captures the relevant physics. An alter-
native method would be to solve Eq.~11! with target/sheath
boundary conditions applied at both ends of the field line and
to specify some distributed source term to account for the
influx of hot electrons from the plasma core.

IV. NUMERICAL METHOD

The kinetic equation is solved by finite difference using
a two-step alternating direction implicit~ADI ! relaxation
scheme:

~ f n11/22 f n!/Dt1A~ f n11/2!1B~En, f n!50, ~13!

~ f n112 f n11/2!/Dt1A~ f n11/2!1B~En11, f n11!50, ~14!

whereA andB are operators

A~ f !5S v i

]

]zD f ,
B~E, f !5SE ]

]v i
D f2C~ f !,

and the subscripts onf e andEi have been omitted to simplify
the notation. Note thatDt is the time increment for each
half-step, i.e., forn→n11/2 andn11/2→n11. The opera-
tor A represents convection along the magnetic field line,
while the operatorB represents velocity space flows due to
collisions and the electric field.

The z mesh extends from some upstream boundary at
z5zu to the target/sheath boundary atz50. A fully centered
flux-conserving difference scheme is used to representA( f ).
Boundary conditions at both ends of thez mesh require
specification of the incoming particle fluxes. Atz5zu , the
influx for v i.0 is fixed to bev i f u , wheref u is a Maxwellian

distribution of prescribed densityneu and temperatureTeu . A
standard tridiagonal system is then solved to advance Eq.
~13! for v i.0. Each point on the~u,v!-mesh is advanced
independently. Atz50, the outflux forv i.~2eDFsh/me!

1/2 is
computed via Eq.~6!. Note that Eq.~6! is a relation between
the sheath fluxGe0 and the sheath potentialDFsh; in our case
Ge0 is fixed by Eq.~4! andDFsh is calculated. To complete
the target/sheath boundary condition, the incoming particle
flux for negativev i must be specified. Since electrons with
0,v i,~2eDFsh/me!

1/2 are reflected, part of the influx is au-
tomatically specified. The remaining influx is specified as
v i f c ~for v i,0! where f c is a cold Maxwellian representing
the ionization source. The temperature off c is chosen to be
cold in comparison to the sheath temperature. The normal-
ization of f c is determined by requiring

E
v i,0

v i f cd
3v52Ge0 ,

thereby imposing zero net flux at the boundary. A standard
tridiagonal system is then solved to advance Eq.~13! for
v i,0.

A nine-point flux-conserving difference scheme is used
to representB(E, f ).22 The finite-difference scheme actually
employs ~u,v! coordinates in velocity space, with
v'5v sinu and v i5v cosu. The v mesh is truncated at
some maximum energy, large compared to the upstream tem-
perature, where an outflux boundary condition is applied,
i.e., phase space density flows freely off the edge of the grid.
The total number of particles lost at thev-mesh boundary is
typically negligible, verifying that mesh truncation does not
effect the integrity of the solution.

The termB(En11, f n11) in Eq. ~14! includes two types
of nonlinearities. The collision operator is nonlinear, since
the Fokker–Planck coefficients for electron–electron colli-
sions depend on integrals over the unknown distribution
function. Within the context of our ADI relaxation scheme,
this is handled by making the replacementf n11→ f n11/2 in
all such collision integrals. A second nonlinearity enters
through the electric field term, involving the product of two
unknownsEn11 and f n11, where the additional equation for
En11 takes the form of an integral constraint onf n11,
namely

E v i f n11 d3v50.

TABLE I. Comparison of results from threeFPET runs:Teu is the temperature~in eV! of the incoming Maxwellian at the upstream boundary,Te0 is the
temperature at the target/sheath boundary, and (Te0) f is the corresponding sheath temperature calculated from classical fluid theory, as discussed in the text.
The sheath potentialDFsh is given in eV. The following normalized parameters are also shown:f5eDFsh/Te0, d5qe0/(Ge0Te0), q̄05qe0/(ne0ve0Te0),
q̄u5qeu/(neuveuTeu), and leu/L, whereleu is the thermal MFP evaluated at the upstream boundary, andL is the connection length to the target. For
comparison, the classical values off andd are approximately 2.8 and 4.8, respectively, in all three cases.

Run Teu Te0 (Te0) f DFsh f d q̄0 q̄u leu/L

1 74 11 14 35 3.2 6.1 0.17 0.038 0.052
2 108 18 30 61 3.4 8.2 0.22 0.069 0.107
3 140 28 53 104 3.7 9.4 0.24 0.098 0.178
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~Note, the constraint must be applied at eachz-mesh point
along the magnetic field line.! The solution is obtained by
linearizing Eq.~14! as follows:

~ f n112 f n11/2!

Dt
1B~En, f n11!

52A~ f n11/2!2DES ]

]v i
D f n11/2,

where DE[En112En. Upon settingf n115h1gDE, one
obtains independent equations forh andg

h/Dt1B~En,h!5 f n11/2/Dt2A~ f n11/2!,

g

Dt
1B~En,g!52S ]

]v i
D f n11/2.

Notice that the these equations involve the same operator on
the left-hand side. Within the context of our finite difference
scheme, this operator is represented as a banded matrix and
factored once to compute bothh and g. The SLATEC
~LINPACK!23 routinesSBGCOandSGBSwere used to factor
the band matrix by Gaussian elimination and solve the linear
system of equations. The updated electric field is then deter-
mined as

En115En2S E d3v v ihD S E d3v v igD 21

.

There are two alternatives for updating the distribution func-
tion; we can either accept the solution of the linearized equa-
tion, i.e.,h1gDE, or we can recompute the solution of Eq.
~14! using the above value forEn11. Since the later algo-
rithm is stable for arbitraryDt, it generally justifies the ad-
ditional computation required on each time step.

It is important to point out that each grid point on thez
mesh is advanced independently in Eq.~14!, allowing large
gains in overall speed to be obtained through parallel pro-
cessing. The two-dimensional velocity space step Eq.~14!
takes much more computation than the one-dimensional con-
figuration space step Eq.~13!. In a CRAY T3D parallel pro-
cessing implementation of the code, we solve Eq.~14! on
separate processors for each space point. The space equation,
Eq. ~13!, is solved across processors. For 30 space points
~and 64v points, 32u points! the code is executed in 750 s
using 8 processors, and 240 s using 32 processors. Thus, as
the number of processors was increased by a factor of 4,
there was a factor of 3.1 overall speedup. Limits on speedup
are yet to be explored.

V. COMPARISON OF KINETIC AND FLUID
SOLUTIONS

To compare kinetic solutions with classical fluid solu-
tions, we chose a set of threeFPETruns: each run documents

FIG. 2. Results ofFPETrun 1 showing~a! the temperature profile and~b! the
parallel heat flux~MW/m2!. In ~a! the kinetic solution fromFPET is com-
pared to conventional fluid theory~dashed line! for the same heat flux. At
the upstream boundary, the kineticTe profile diverges somewhat from the
fluid profile; this is an artifact of the numerical boundary condition, which
imposes a Maxwellian distribution for incoming electrons. The triangles in
~b! show mesh points of the numerical simulation. Note, that the heat flux
incident to the surface of the target isqei

sina, wherea is the small grazing
angle of the field line with respect to the target.

FIG. 3. Time evolution ofFPETrun 1 showing~a! temperature at sheathTe0,
~b! energy transmission factord, and~c! normalized sheath potentialf, as
functions of time. The time is specified in code units, defined as the length
of the field line~30 m! divided by the maximum velocity mesh point@ap-
proximately 4(Teu/me)

1/2#.
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an increasing departure from classical fluid theory. In all
three runs, the density profile was taken to be

ne5ne0~12az!22/7, ~15!

with ne05231020 m23 and a59.284 m21, to give an up-
stream density ofneu5431019 m23 at zu5230 m. The elec-
tric field was calculated to give zero particle flux, thereby
maintaining the density profile. The temperature of the cold
Maxwellian particle source at the target/sheath boundary was
taken to be 3 eV in all three runs. Upstream, the incoming
distribution function was taken to be a Maxwellian with den-
sity neu and temperatureTeu . The upstream temperature was
increased in each of the three runs, steady-state solutions
were obtained, and parameters such as the target/sheath tem-
perature and energy transmission factor were calculated. The
results are summarized in Table I. Detailed comparisons to
fluid theory are discussed below.

Results of the first run are shown in Figs. 2 and 3. Here
the parameters are very close to the DIII-D example dis-
cussed at the end of Sec. II, so the length scales in Fig. 1 still
apply. Figure 2~a! shows theTe profile, whereTe is calcu-
lated from the distribution function,

Te5
me

3ne
E d3v v2f e .

The heat flux, shown in Fig. 2~b!, is nearly constant along
the field line, as would be expected in steady state. It is
noteworthy, however, that the heat flux is not precisely con-
stant. The steady increase seen in Fig. 2~b! is actually due to

discretization errors involving the collision operator, as will
be discussed in more detail below. Figure 3 shows the time
evolution of the temperature~and other parameters! at the
sheath edge. The system relaxes quickly at first and then
gradually approaches a true steady state.@Fluctuations of the
normalized sheath potential visible in Fig. 3~c! are artifacts
of the relaxation scheme. These fluctuations are so small,
note the scale of Fig. 3~c!, as to be insignificant.# Also shown
in Fig. 2~a! is the fluid temperature profile calculated for the
same parameters. This is done by integrating Eq.~1! numeri-
cally using theqe profile determined byFPET, i.e., as shown
in Fig. 2~b!. ~The variation of the Coulomb logarithm is also
properly treated in the numerical integration.! Integration
proceeds from the target/sheath boundary and continues up-
stream. The appropriate fluid value forTe0 is calculated from
Eq. ~10!, whered is taken to be approximately 4.8, as dis-
cussed in Sec. II. The fluid values forTe0 are also shown in
Table I. Although the kinetic and fluidTe profiles are in
close agreement for run 1, the kinetic effects are exaggerated
in runs 2 and 3, leading to considerable differences between
the two profiles in the vicinity of the target. The results for
run 2 are shown in Figs. 4 and 5. The results for run 3 are
shown in Figs. 6 and 7.

The velocity space mesh for all three runs consisted of
200v points and 50u points. A dense grid inv is necessary
to accurately represent both the bulk and tail of the distribu-
tion function, especially in the case of a large temperature
gradient. One type of discretization error in this system in-
volves the nonlinear collision operator, which spuriously

FIG. 4. Results ofFPETrun 2 showing~a! the temperature profile and~b! the
parallel heat flux~MW/m2!. In ~a! the kinetic solution fromFPET is com-
pared to conventional fluid theory~dashed line! for the same heat flux. The
triangles in~b! show mesh points of the numerical simulation.

FIG. 5. Time evolution ofFPETrun 2 showing~a! temperature at sheathTe0,
~b! energy transmission factord, and~c! normalized sheath potentialf, as
functions of time. The time is specified in code units, defined as the length
of the field line~30 m! divided by the maximum velocity mesh point@ap-
proximately 4(Teu/me)

1/2#.
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generates a certain amount of energy. The effect manifests
itself in Fig. 2~b! as a small, but steady increase in the heat
flux. The magnitude of this numerically generated energy
source depends on the velocity space mesh, which is the
same for each of the three runs. Therefore, in a situation
where the temperature gradient is large, corresponding to a
large physical heat flux, the spurious contribution is rela-
tively small, as in Fig. 6~b!.

Several interesting facts can be discerned from Table I
and Figs. 2–7. In Sec. II we argued that the divertor has a
single collisionality regime, i.e., thatle/LT should be inde-
pendent of the heat flux, or density. This argument was based
on fluid theory combined with classical target/sheath bound-
ary conditions. In fact, however, kinetic solutions show an
increasing departure from fluid theory as the heat flux is
increased. This is because the upstream temperature is in-
creased, thereby increasing the MFP, while the connection
length to the target remains fixed. As a result, the distribution
function in the target/sheath region becomes rich in super-
thermal electrons and increasingly nonisotropic~see Figs. 8
and 9!. The distortion of the distribution function also modi-
fies the way the heat flux is distributed in energy, i.e., near
the target the heat flux is carried by a larger relative fraction
of energetic electrons, as shown in Fig. 10. Sinced is a
measure of the energy carried by electrons escaping through
the sheath@see Eqs.~7! and ~8!#, its value is dramatically
enhanced by these non-Maxwellian features. It is easy to see
that an increase ind must lead to a corresponding drop in
Te0, when compared to the fluid value, because bothqe0 and

Ge0 are fixed in the comparison. Furthermore, sinceTe0 is
reduced, butf remains approximately constant, the physical
value ofDFsh is also reduced in comparison to the classical
value. For example, in run 3 the classical value ofDFsh is
162 eV, whereas the kinetic value is 105 eV, a considerable
difference.

FIG. 6. Results ofFPETrun 3 showing~a! the temperature profile and~b! the
parallel heat flux~MW/m2!. In ~a! the kinetic solution fromFPET is com-
pared to conventional fluid theory~dashed line! for the same heat flux. The
triangles in~b! show mesh points of the numerical simulation.

FIG. 7. Time evolution ofFPETrun 3 showing~a! temperature at sheathTe0,
~b! energy transmission factord, and~c! normalized sheath potentialf, as
functions of time. The time is specified in code units, defined as the length
of the field line~30 m! divided by the maximum velocity mesh point@ap-
proximately 4(Teu/me)

1/2#.

FIG. 8. Normalized distribution function near the target/sheath boundary vs
normalized energy for each of the threeFPETruns. The normalized energy is
E5mev

2/(2Te), whereTe is evaluated locally. The distribution functions
are integrated over pitch angle and rescaled to give unity when integrated
overE. A Maxwellian distribution is shown for comparison. A superthermal
tail is visible in each of the three runs, becoming more dramatic as the heat
flux increases.
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In the above discussion we emphasized the role of ki-
netic effects on the target/sheath boundary boundary condi-
tion. These effects seem to be independent of any kinetic
modifications to the thermal conductivity. To demonstrate
this, we recalculated the fluidTe profile using the kinetic
value ofTe0 as a boundary condition~BC! in Eq. ~1!. @Using
the kinetic value ofTe0 is equivalent to assuming the kinetic
value of d and recalculatingTe0 from Eq. ~10!.# With the
adjusted BC the fluidTe profile accurately tracks the kinetic
profile for 10–15 m upstream of the target, as shown in Fig.
11. We therefore conclude, in the case of a simple divertor,
that classical thermal conductivity is nearly correct and that
only modest flux-limiting,2,9 or nonlocal corrections3–8

would be required to accurately model the kineticTe profile
farther upstream. For the model studied in this paper, the
major correction to fluid theory arises in the sheath boundary
condition. In more general divertor studies, however, strong
radiation cooling of electrons may lead to steeper tempera-
ture profiles, requiring more significant modifications of the
thermal conductivity.

VI. CONCLUSIONS

Electron transport along open field lines in the diverted
scrape-off layer of a tokamak has been studied numerically
with the Fokker–Planck edge transport code~FPET!. The

code gives a proper kinetic treatment of the competition be-
tween free streaming along the field line and collisional scat-
tering in velocity space. The electrostatic field is calculated
by imposing quasineutrality along the entire field line. The
potential drop across the target/sheath boundary is calculated
by restricting the electron flux escaping through the sheath.
The sheath itself, however, is not resolved. Rather, the De-
bye sheath, the ion gyrosheath, and the ionization layer in
front of the target are all compressed into one boundary con-
dition that requires specifying the electron flux to the target.

Kinetic results obtained withFPET have been compared
to classical fluid results for the case of a simple~nonradia-

FIG. 10. Heat flux~MW/m2 per eV! vs energy~eV! at two points along the
field line—near the target/sheath boundary and near the upstream
boundary—forFPET run 3. The normalized energy of the positive peak is
4.75 at the upstream location and 5.73 near the target. Recall that the nor-
malized energy ismev

2/(2Te), whereTe is evaluated locally, as in Fig. 8.
The distribution of heat flux near the target is shifted toward higher normal-
ized energy and contains a high energy tail due to free-streaming electrons
from upstream.

FIG. 11. Temperature profile fromFPET run 3, as in Fig. 6~a!, but now
compared to fluid theory with an adjusted boundary condition that assumes
the kinetic value ofTe0. With the adjusted BC the fluidTe profile accurately
tracks the kinetic profile for 10–15 m upstream of the target. Note that the
difference between the two profiles is exaggerated near the upstream bound-
ary. This is because the kinetic simulation imposes a Maxwellian distribu-
tion for incoming electrons, an unnatural boundary condition since the dis-
tribution function is actually carrying a substantial heat flux.

FIG. 9. Contour plots of the normalized distribution function near the target/
sheath boundary for each of the threeFPET runs. The velocities are normal-
ized to the local thermal velocityve5(Te/me)

1/2. The distribution functions
are rescaled by the factorve

3ne
21. Because energetic electrons are absorbed

by the target, the distribution functions are depleted of energetic electrons
propagating upstream, i.e., with negativev i . Lower energy electrons trav-
eling toward the target are reflected by the sheath potential and fill in the
depleted region through pitch-angle scattering. Note, the spatial position
shown here is 12 cm upstream of the target.
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tive! divertor. We find that the free streaming of electrons
from the midplane of the SOL creates a surplus of superther-
mal electrons in the vicinity of the target. As a result, the
sheath energy transmission factor is enhanced relative to the
classical~Maxwellian! value and the bulk electron tempera-
ture is lowered relative to the classical value. In comparing
kinetic and fluid results, we find that classical thermal con-
ductivity is approximately correct in describing the steady-
stateTe profile of a simple divertor, provided that the sheath
temperature is taken from the kinetic simulation. Therefore,
in our simulations, the main importance of the non-
Maxwellian character of the distribution function is to
modify the target/sheath boundary physics. Since superther-
mal electrons escaping through the sheath contribute so
strongly to the overall heat flux, it is inevitable that the bulk
electron temperature falls in response, otherwise a constant
heat flux cannot be maintained. Furthermore, this result does
not depend on the detailed structure of the boundary layer,
i.e., the Debye sheath, the ion gyrosheath, and the ionization
layer, rather it is a straightforward consequence of energy
balance and particle balance: energetic electrons that escape
through the sheath are replaced by cool electrons born in the
ionization layer. A lower bulk electron temperature in the
vicinity of the target results in a smaller potential drop across
the sheath, since the two are roughly proportional. The pre-
cise relation between the sheath potential and the electron
temperature, however, depends on detailed modeling of the
boundary layer. This is important because the sheath poten-
tial largely determines the energy with which ions impact the
target, thereby affecting the rate of target erosion.

In conclusion, we report the development of a new ki-
netic transport code for parallel transport in the scrape-off
layer. Using this code to study a simple nonradiative divertor
configuration we discovered that the electron distribution
function in the vicinity of the target is modified in two ways:
~i! there is a non-Maxwellian tail, or surplus of superthermal
particles, and~ii ! the bulk temperature is reduced. These re-
sults will have to be included in more detailed divertor stud-
ies to uncover their full implication, but we anticipate a
strong effect on ionization rates and radiation rates from im-
purities in the vicinity of the target, as determined by the

energy dependence of each individual cross section relative
to the electron temperature and the population of superther-
mals.
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