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The fully relativistic collision operator in CQL3D code is updated and tested in different applications. The operator 
is benchmarked against the quasi-relativistic operator in CQL3D, and against the fully relativistic operator in the 
ADJ code. 
 
 
I. BACKGROUND 
 
In general form, the collision operator is written as [1, 2] 
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where v is the momentum per rest mass, and Dab and Fab are the diffusion and friction 
coefficients, 
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Here, 2444 aaa meZπ=Γ , if cgs units are used.  
       In the non-relativistic limit, the momentum per rest mass v reduces to velocity u. The kernel 
U has the shape [1] 
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where s = u−u′. It can be seen that  
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The latter equation allows changing the differentiation over u′ in Eq. (3) to differentiation over u 
and moving it outside of the integral. By introducing ‘potentials’ [3, 4] 
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the diffusion coefficient can be written through ∂2h/∂u∂u, and the friction coefficient – through 
∂g/∂u.  The non-relativistic collision operator is one of the options in CQL3D.  

 1



       For relativistic particles, an approximate description of collision operator (‘quasi-relativistic 
operator’) is obtained [5] when the kernel is taken in the shape given by Eq. (4), but integration 
in Eqs. (2-3) is performed over relativistic momentum. By introducing ‘potentials’ 
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the collision operator is expressed as 
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The values of u (velocity) and v (momentum per rest mass) in Eqs. (9-11) are related through 
γ/vu = ,             (12) 

or 
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where 22 /1 cv+=γ .  Further, the distribution function is expanded in Legendre polynomials, 
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leading to expressions for ha and ga in terms of integrals like [5] 
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Effectively, the primed and non-primed variables in Eqs. (9-10) become decoupled. The quasi-
relativistic collision operator is another option in CQL3D.  
       The strict formulation for the relativistic collision operator is based on the fully-relativistic 
kernel [2], 
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where α = v/c and αα ′⋅−′= γγr . (note, αα is a matrix, and α⋅α′ = αα cos(θ −θ′ ) is a scalar, 

where θ is the pitch-angle in v-space).  In the non-relativistic limit, r→1, cr /12 uu ′−→− , 
and U reverts to the form of Eq. (4).   
       The diffusion and friction coefficients are expressed as [6] 
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where L and K operators are [7, 8] 
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The ‘potentials’ Ψ1, Ψ2, Ψ3 are expressed through the distribution function fb of background 
species as 
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Further, the distribution function of the background species and kernels of Ψ1, Ψ2, Ψ3 are 
expanded in terms of Legendre polynomials,  
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Recalling that αα ′⋅−′= γγr , the value of cos(θ −θ′ ) can be expressed as 
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Substituting the definition of Pl , 
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Performing the binomial expansion of ( ) klr 2−−′γγ , one obtains 
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The steps starting from Eq. (29) allow decoupling the primed and unprimed variables. However, 
it should be noted that this procedure also introduces a problem at the α→0 or α′→0 limit. The 
double sum in Eq. (33) contains divergent terms, while the original integral in Eq. (30) is not 
divergent at r→1 (although ξ3(r) is divergent at r→1, the integral is not). This observation 
implies the presence of large canceling terms in the double sum of Eq. (33). Such terms become 
a source of numerical noise and instabilities in the |v| ~ 0 region of the momentum grid. 
       Continuing this procedure, the ‘potentials’ in Eqs. (21-23) are expressed as [6] 
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Here, the functionals j
2,1ψ  are  
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The third functional, j
3ψ  is a combination of the first two [6],  
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The ‘potentials’ defined above are used to determine the local collision coefficients for the 
bounce-averaged Fokker-Planck equation, 
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The fully relativistic collision operator is the third option in CQL3D. 
       It should be mentioned that an alternative representation for the fully relativistic collision 
operator was obtained by Braams and Karney [7, 8]. They start with the same relativistic kernel 
as given by Eq. (16) and introduce five ‘potentials’, four of which are used to express the 
diffusion and friction coefficients; these four potentials could be combined into three potentials 
given above by Eqs. (35-37). The potentials are further expanded in terms of Legendre 
harmonics,  
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It is shown that  
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where  is the coefficient in the expansion of the distribution function in Legendre harmonics, 
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with higher-k functions defined recursively by 
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and similarly for . This approach is implemented in the ADJ code which calculates the 
conductivity of relativistic plasma [8]. The ADJ code is used below for benchmarking the 
CQL3D code with conductivity tests.  

*][kly

 
 
II. GOALS 
 
The main purpose of the current work is to debug and benchmark the fully relativistic operator in 
CQL3D. Presently, the code can be launched in three main modes: relativ =’disabled’, ‘enabled’, 
and ‘fully’, where relativ is the input parameter in cqlinput namelist. Those cases correspond to 
non-relativistic, quasi-relativistic, and fully-relativistic collision operators. The first two have 
been intensely used and benchmarked. The latter one is known to make the code unstable. For 
benchmarking, three types of tests are performed: Calculations of plasma conductivity, lower 
hybrid heating/current drive (LH), and electron cyclotron heating (ECH). 
 
 
III. DEBUGGING, MODIFICATIONS, NUMERICAL PROBLEMS 
 
After examining the code, several errors have been found. In subroutine cfpcoefr, which defines 
the fully relativistic operator, a bounds error is corrected. This error is related to definition of ηlkj 
coefficients. Another error is found in the index range for arrays tamt1 and tamt2, which define 
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the integrals in Eqs. (41-44). In subroutine micxinil, the definition is added for γ−1 ≡    
gamman(j,-1), which is used in cfpcoefr for j = 1 velocity point. Before this, gamman(j,-1) was 
defined for j > 1 only.   
       Further tests have shown that the relativ=’fully’ mode results in a code crash if the 
temperature of plasma is below 5 keV, and the number of requested Legendre harmonics (mx) is 
higher than three. Numerical instability is seen to originate at small |v| in the distribution 
function. It is determined that the instability is caused by divergent terms in Eqs. (33, 38-40) at 
|v|→0 (α→0), as discussed in Section I. Although the functions given by Eqs. (38-44) are 
defined in the code starting from the second node of the v-grid (thus avoiding |v| = 0 point), the 
large canceling terms introduce increasing numerical error at grid points close to |v| = 0. The 
largest value of n in  is determined by the highest harmonic of Legendre polynomials, so 
that the error grows with the number of requested Legendre harmonics. The tests have shown 
that for T

nα/1

e ~ 5 keV, the value of mx should be limited by 3.  This imposes a limitation for the 
fully relativistic operator, which can be eliminated in future by combining the fully-relativistic 
operator with quasi-relativistic for the low-|v| range. The quasi-relativistic operator does not have 
1/|v| divergent terms because of the much less complicated structure of the kernel, as given by 
Eq. (4). Although the Ml(v)-integral given by Eq. (15) can be divergent for high l and small v, it 
enters the expressions for ga and ha potentials with the weighting factor ul+2, so that the whole 
term is not divergent. Similar condition holds for all terms incorporated into ga and ha potentials 
of the quasi-relativistic formulation.  
       At present, the situation with divergent terms in fully relativistic operator is improved by re-
writing expressions for derivatives of nm αγ  and nm ααγ )(sinh 1−  in order to increase 
accuracy (by collecting all terms with the same power of α), and also by modifying subroutine 
cfpleg which evaluates Legendre coefficients for the distribution function. As an option, it zeroes 
coefficients with l > 3 at small v, while retaining them at large v. With these 
modifications, the fully relativistic operator can be used with mx up to 5, although it is 
recommended not to exceed mx = 3. 

)(vV b
l

       All tests here are done with mx = 3 Legendre harmonics. The tests with relativ = ‘enabled’ 
(quasi-relativistic operator) show that increasing mx to 5 does not add noticeable features to the 
final distribution function in all three types of tests performed in this study.  
 
 
IV. BENCHMARKING 
 
1. Conductivity test 
 
The conductivity of plasma in relativistic limit has been calculated in [8] using generating 
functions  and  as described at the end of Section I. Imposing a weak electric field 
along the magnetic field results in a first order correction to initially Maxwellian electron 
distribution function. The steady state is achieved due to collisions of electrons with background 
electrons and ions. This approach is implemented in the ADJ code which is used as a reference 
point for CQL3D calculations of conductivity. 

*][kly *][klj

       For benchmarking purposes of the code, the plasma is considered to be uniform in density 
and temperature. The main parameters in the cqlinput namelist are given below and in Table I. 
Pitch-angle (θ) grid: iy = 200;   Momentum (v) grid: jx = 330; 
Legendre harmonics’ number:  mx = 3; 
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Time step: see Table I;     Number of time steps:  nstop = 16; 
‘Seed’ electric field:   elecfld(0) = 9.17e-7,  elecfld(1) = 9.17e-7 (flat radial profile);  
Largest energy on the (v,θ)-grid:   enorm = 39.1389*Te[keV]  
(enorm = 20,000 keV for Te = 511 keV); 
Boundary conditions:   lbdry(1)='fixed',    lbdry0='disabled'; 
Density of species (reden(*,*)): ne = ni = 1014 cm-3, flat profile;  ni is adjusted for Zi > 1. 
Temperature: see Table I; ion temperature is equal to electron temperature; flat profiles. 
 
TABLE  I. Main parameters for benchmarking. 
Te 
(keV) 

enorm  
(keV) 

τee  (sec) τii  (sec) Tested time step,  
dtr  (sec) 

dtr/τee

5.11 200 1.8592e-5 3.0775e-3 0.2 – 50 1e4 – 3e6 
51.1 2,000 5.8794e-4 9.7318e-2 6 – 50 1e4 – 1e5 
511. 20,000 1.8592e-2 3.0775 50 – 200 3e3 – 1e4  
5,110. 200,000 0.58794 97.318 50 – 6,000 1e2 – 1e4 
51,100. 2,000,000 18.592 3.0775e+03 20,000 – 200,000 1e3 – 1e4 

 
       In the first round of tests, conductivity is calculated for the near-axis region of plasma. The 
results from CQL3D for ε = r/R = 1e-6 are compared with data from Braams-Karney [8] which 
correspond to ε = 0. Five groups of runs with different plasma temperatures are performed.  For 
each temperature value, the maximum energy on the grid is adjusted to maintain enorm = 
39.1389*Te[keV]. If enorm is set too large, the resolution in velocity grid at v ~ vth is reduced. 
On the other side, if enorm is too small, the effects of the tail formation in the distribution 
function can be missed. The value of enorm is related to the largest momentum-per-rest-mass 
(vnorm) on the grid by enorm/mc2 = γnorm −1, where γnorm = (1 + (vnorm/c)2)1/2. As the relativistic 
Maxwellian distribution function is proportional to    

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−∝

T
mcvfm

2)1(exp)( γ , 

it is clear that the ratio enorm/T defines the drop factor of the distribution function at v = vnorm,  

⎟
⎠
⎞

⎜
⎝
⎛−=

T
enorm

f
vf

m

normm exp
)0(

)(
, 

which equals to exp(-39.1389) ≈ 1.e-17 in this case. 
 
      The time step dtr was selected to be large enough that the distribution function can reach a 
steady state in a small number of iterations. The fully implicit method of integration allows 
setting dtr to a nonphysically large value for implicit steady state calculations.  The values of dtr 
specified in Table I allowed achieving steady state in 16 time steps. 
 
      The option chosen for the boundary conditions implies that the distribution is held constant at 
v = 0 during "time" advancement. If a tail is formed in the distribution, the total density will 
grow.  An alternative option is to set lbdry(1)='conserv', which implies the conservation of the 
total density, but not the value of f(0). In most tests on conductivity, the results obtained with 
either boundary condition do not significantly differ. (It should be mentioned, though, that in 
runs at Te ~ 5 keV, the option lbdry(1)='conserv' results in a sudden jump of conductivity, if the 
fully-relativistic operator is used. The problem is removed by reducing mx to 2.) 
 

 8



      The calculated values of conductivities at the near-axis region of plasma (ε = r/R = 1e-6) are 
shown in Table II; ion charge is Zi = 1 in these runs.  In the case of the non-relativistic collision 
operator (relativ=’disabled’), the conductivity does not show any significant dependence on Te. 
In the case of Te = 51.1 MeV, the electric field is reduced to elecfld = 9.17e-8, otherwise a strong 
deformation is developed in the distribution due to run-away electrons.  
 
TABLE  II.  Normalized conductivities for effective ion charge Zeff = 1.  The conductivities are 

normalized to 
( )

eff

eB

e
n Z

Tk
em

2/3

2 ln4
1

Λ
=

π
σ   [cgs units]. 

Te 
(keV) 

elecfld 
(cgs) 

CQL3D  
relativ=’disabled’ 

CQL3D  
relativ=’enabled’

CQL3D  
relativ=’fully’ 

Braams-
Karney   [8] 

5.11 9.17e-7 7.40313 7.26529 7.27454 7.27359 
51.1  9.17e-7 7.40313 6.29477 6.18808 6.20946 
511.  9.17e-7 7.40371 3.21786 3.11544 3.13472 
5,110. 9.17e-7 7.46231 1.04061 1.00528 1.02875 
51,100. 9.17e-7 24.9037 

(run-away e) 
0.33281 0.29501 0.32528 

51,100. 9.17e-8 7.46249 0.28052 0.27409 0.32528 
 

      In the second round of tests, the conductivity is calculated for different radial points (ε); 
results from CQL3D are compared with that obtained from the ADJ code. The results are 
summarized in Figs. (1-4). Black dots (connected) correspond to normalized conductivity 
calculated with the ADJ code. The pitch-angle grid size, momentum grid size, and the factor of 
enorm/T in ADJ runs are set equal to those in CQL3D runs. The number of Legendre harmonics 
is also set to 3 in ADJ runs, although changing it to 5 affects only the 5th-6th digit in value of 
conductivity. For CQL3D runs displayed in Figs. (1-4), the time step is set according to dtr = 
104τee. The value of the electric field in all runs is set to elecfld = 9.17e-8; for such field the 
distortion of the distribution function remains negligible even for the high temperature of Te = 
51.1 MeV.  In runs with Zi = 5, the density of ions is reduced by 5.  
       Both quasi-relativistic and fully-relativistic collision operators in CQL3D show good 
agreement with each other and with the ADJ code. For Te/mec2 ≥ 1, the fully relativistic operator 
in CQL3D yields a better match with the ADJ code. For Zi = 5, Te/mec2 = 100, both operators in 
CQL3D give a somewhat lower value of conductivity than in ADJ, but agree perfectly with each 
other (bottom curve in Fig. 2).   
       It is surprising to see that even at a very high temperature, Te = 51.1 MeV = 100 mec2, the 
quasi-relativistic operator yields conductivity values close to those obtained with the fully 
relativistic operator. A possible explanation is that the value of conductivity is determined mostly 
by collisions of electrons with ions, even for Zi = 1. In the first-order approximation, the 
difference between fully-relativistic and non-relativistic kernels is [6] 

nrnrr UUU 22ββ ′≈− , 
where β = u/c, with u being the velocity (not momentum per rest mass).  
For 51.1 MeV electrons,  

2/1

2

2

2 1)(1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
+

=
cmT

cmT

cv

cv

ee

ee

th

thβ , 
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so that = 100/101 = 0.99.   2β
For 51.1 MeV deuterium ions, however,  

2β ′ =  (100/3670) / (1+ 100/3670)  =  0.0265. 
Hence, nrnrr UUU 026.0≈−  in our case. 
For verification, a test is performed with artificially light ions, mi = 2me. The results are given in 
Table III, third line. The results for “normal” deuterium ions are repeated in the second line, for 
comparison. Also, results are shown for artificially heavy ions. It is seen that the fully relativistic 
operator yields a 33% smaller conductivity than the quasi-relativistic operator, when all 
interacting species are highly relativistic ( > 0.98). It should be noted that in Braams-Karney 
calculations [8] given in Table II, and in the ADJ code, the ions are considered infinitely 
massive. 

2β

 
 TABLE  III.  Normalized conductivities for different ion masses. 
Plasma parameters: Te = Ti = 51.1 MeV, Zi = 1, elecfld = 9.17e-8, ε = 1e-6. 

mi CQL3D  relativ=’enabled’ CQL3D  relativ=’fully’ difference
3.3433e-21 g (2000 mH) 0.3091 0.3019 2.3 % 
3.3433e-24 g (= 2 mH) 0.2805 0.2741 2.3 % 
1.8219e-27 g (= 2 me) 0.3134 0.2093 33 % 

 
       As mentioned above, for Te = 51.1 MeV and elecfld = 9.17e-7, the distribution function 
becomes visibly distorted. This is the only case when the quasi-relativistic and fully relativistic 
operators yield visibly different, although not significantly different, distribution functions. The 
results are displayed in Figs. (5-12). For comparison, the results from relativ=’disabled’ run 
(non-relativistic operator) are also shown in Figs. (13-16), although they don’t have much 
physical meaning at such temperature. Note that vnorm is different in non-relativistic case, since it 
is determined from enorm = 22

normmv ; thus, vnorm/vth = 391 in Figs. (5-12), but vnorm/vth = 8.85 in 
Figs. (13-16), where vth = (Te/me)1/2. 
 
 
2. LH test 
 
The lower hybrid heating/current drive scenario provides a good opportunity for testing 
relativistic operators, because it involves interaction of high-energy electrons with (possibly) 
relativistic bulk electrons. Two cases are considered in this part: Te = 511 keV (Te/mec2 = 1), and 
Te = 30 keV, which is a realistic temperature for ITER.  
      For tests, a simplified LH model is considered, for a single flux surface with analytical 
equilibrium magnetic field. The wave parameters are specified in cqlinput, with 
vlhmod='enabled'. Parameters vparmin and vparmax allow setting the range of u||/c (velocity; not 
momentum per rest mass) where the wave interacts with the distribution. For the Te = 511 keV 
run, these parameters are set to  
vparmin  = u||min/c = 0.94107937416983, corresponding to 1 MeV, 
vparmax = u||max/c = 0.99994882620149, corresponding to 50 MeV. 
The magnitude of the RF diffusion coefficient in units of  is set to dlndau = 200. eithv τ/2

 

 10



Other main parameters: 
Pitch-angle (θ) grid: iy = 200;   Momentum (v) grid: jx = 200; 
Legendre harmonics’ number:  mx = 3; 
Time step: dtr = 200;     Number of time steps:  nstop = 8; 
Largest energy on the (v,θ)-grid:  enorm = 50,000 keV; 
Boundary conditions:   lbdry(1)='conserv',    lbdry0='enabled'; 
Density of species (reden(*,*)): ne = ni = 1013 cm-3. 
 
      The results obtained with quasi-relativistic and fully relativistic operators are compared in 
Figs. (17-21). The fully relativistic operator yields a less extended tail in distribution. As a result, 
the driven current is about 25% smaller, as seen in Figs. (20-21). 
 
      In the second case, Te = 30 keV, the range of resonant u||/c is set to  
vparmin = 0.866026, corresponding to 511 keV, 
vparmax = 0.995692, corresponding to 5 MeV. 
The magnitude of the RF diffusion coefficient is set to dlndau = 40. The largest energy is 
adjusted to enorm = 5,000 keV, and the time step is reduced to dtr = 5; all other parameters are 
kept the same as in the previous case. The results obtained with the two relativistic operators are 
compared in Figs. (22-26). The current is small here, because the resonant region is shifted to the 
high energy relativistic range of u||/c. The difference is very small; the current calculated with 
fully relativistic operator is only 4.8% smaller than with the quasi-relativistic operator. Even 
though the electron tail is in the relativistic MeV region, the bulk electrons are not ( ≈ 0.11), 
which explains why the quasi-relativistic operator works well in such a case.  

2β ′

  
 
3. ECH test 
 
In electron cyclotron heating, a high-energy tail can be formed in electron distribution. Here, a 
typical DIIID ECH scenario is examined with quasi-relativistic and fully relativistic operators. 
The wave parameters are set to (with vlfmod = 'enabled'): 
vlfharm1 =   2.,     harmonic number; 
vlfnpvar  = '1/R',   sets 1/R variation to parallel refractive index; 
vlfdnorm(1) = 10000.,  strength of QL diffusion coefficient, normalized to ; eithv τ/2

vlffreq(1)     = 110.e9,   frequency (Hz); 
vlfnp(1)      = 0.5,   parallel refractive index at minimum B; 
vlfdnp(1)    = 0.2,   width of parallel refractive index; 
vlfddnp(1)  = 0.1,   additional region of par. refr. index, in which the QL coeff. tapers to 0; 
vlfnperp(1) = 0.5,   perpendicular refractive index; 
vlfeplus(1)  = (0.5,0.),  complex E+/|E| polarization; 
vlfemin       = (0.5,0.),  complex E− /|E| polarizaion. 
 
Other main parameters: 
Pitch-angle (θ) grid: iy = 200;   Momentum (v) grid: jx = 200; 
Legendre harmonics’ number:  mx = 3; 
Time step: dtr = 1;     Number of time steps:  nstop = 4; 
Largest energy on the (v,θ)-grid:  enorm = 700 keV; 
Boundary conditions:   lbdry(1)='fixed',    lbdry0='disabled'; 
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Density of species (reden(*,*)): ne = ni = 5×1013 cm-3. 
Te = 6 keV, Ti = 1 keV. 
 
      The results are presented in Figs. (27-30). The quasi-relativistic and fully relativistic 
operators yield almost indistinguishable results in this case. 
 
 
V. SUMMARY 
 
The fully relativistic collision operator in CQL3D is shown to be operational. The numerical 
instability at low-v range, which is caused by 1/v divergent terms, can be avoided by limiting the 
number of Legendre harmonics by 3. This problem can be addressed in future by using quasi-
relativistic approximation at lower v. The tests have shown close comparison (maximum 
difference 3.5% up to 51 MeV, <1.7% below 51 keV) in calculated conductivity values obtained 
with the fully-relativistic and quasi-relativistic operators. In fusion energy applications, the 
quasi-relativistic operator can be used instead of the fully relativistic operator, because usually 
the relativistic particles either interact with non-relativistic ions (conductivity calculations), or 
relativistic electrons in the tail of distribution interact with bulk non-relativistic electrons. The 
only exception, when the results from the quasi and fully relativistic operators show a noticeable 
difference, is the LH case with Te/mec2 ≈ 1 or higher. In comparisons of the conductivity 
calculated with the CQL3D fully relativistic operator and the ADJ self-adjoint code, CQL3D 
gives <0.6% (less) up to 511 keV, 2.2% at 5 MeV, and 16% at 51 MeV. 
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Fig.1. Conductivity test: Normalized conductivity as a function of inverse aspect ratio for 
different temperatures. 
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Fig.2. Conductivity test: Same as previous figure, but for Zi = 5. 
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Fig.3. Conductivity test: Dependence of normalized conductivity on temperature in linear scale. 
 

0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
normalized conductivity for ε=r/R=0.6

T/mc2

no
rm

−
ed

 c
on

du
ct

iv
ity

Z
i
=1

dots       − ADJ
squares − CQL3D quasi−relativistic
circles   − CQL3D fully relativistic

Z
i
=5

Fig.4. Conductivity test: Same as previous figure, but for ε = 0.6. 
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Fig.5. Conductivity test: Runaway electrons. Distribution function fe for Te = 51.1 MeV, 

relative=’enabled’ (quasi-relativistic operator), elecfld=9.17e-7. 
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Fig.6. Cuts of f vs. v/vnorm at different pitch angles. 
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Fig.7. Conductivity test: Runaway electrons. Distribution function fe for Te = 51.1 MeV, 

relative=’enabled’ (quasi-relativistic operator), elecfld=9.17e-7. 
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Fig.8. Cuts of f vs. v/vnorm at different pitch angles. 
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Fig.9. Conductivity test: Runaway electrons. Distribution function fe for Te = 51.1 MeV, 

relative=’fully’ (fully relativistic operator), elecfld=9.17e-7. 
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Fig.10. Cuts of f vs. v/vnorm at different pitch angles. 
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Fig.11. Conductivity test: Runaway electrons. Distribution function fe for Te = 51.1 MeV, 

relative=’fully’ (fully relativistic operator), elecfld=9.17e-7. 
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Fig.12. Cuts of f vs. v/vnorm at different pitch angles. 
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Fig.13. Conductivity test: Runaway electrons. Distribution function fe for Te = 51.1 MeV, 

relative=’disabled’ (non-relativistic operator), elecfld=9.17e-7. 
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Fig.14. Cuts of f vs. v/vnorm at different pitch angles. 
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Fig.15. Conductivity test: Runaway electrons. Distribution function fe for Te = 51.1 MeV, 

relative=’disabled’ (non-relativistic operator), elecfld=9.17e-7. 
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Fig.16. Cuts of f vs. v/vnorm at different pitch angles. 
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Fig. 17. LH-511keV test: Contour levels of distribution function in momentum space obtained 
with quasi-relativistic collision operator. 
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Fig. 18. LH-511keV test: Contour levels of distribution function in momentum space obtained 
with fully relativistic collision operator. 
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Fig. 19. LH-511keV test: Cuts of distribution function vs. v/vnorm at different pitch angles.  
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Fig. 20. LH-511keV test: Parallel current density as a function of normalized momentum, and 
corresponding cumulative value. Obtained with quasi-relativistic collision operator. 
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Fig. 21. LH-511keV test: Same as previous figure, but obtained with fully relativistic operator. 
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Fig. 22. LH-30keV test: Contour levels of distribution function in momentum space obtained 
with quasi-relativistic collision operator. 
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Fig. 23. LH-30keV test: Contour levels of distribution function in momentum space obtained 
with fully relativistic collision operator. 
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Fig. 24. LH-30keV test: Cuts of distribution function vs. v/vnorm at different pitch angles.  
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Fig. 25. LH-30keV test: Parallel current density as a function of normalized momentum, and 
corresponding cumulative value. Obtained with quasi-relativistic collision operator. 
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Fig. 26. LH-30keV test: Same as previous figure, but obtained with fully relativistic operator. 
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Fig.  27. ECH test: Contour levels of distribution function in momentum space obtained with 
fully relativistic collision operator; quasi-relativistic operator yields almost same result. 
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Fig. 28. ECH test: Total flux in momentum space obtained with fully relativistic collision 
operator (logarithmic scale); same result is obtained with quasi-relativistic operator. 
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Fig. 29. ECH test: Cuts of distribution function vs. v/vnorm at different pitch angles.  

 
 
 
 
 
 

 28



v/vnorm

   Total current density
Fully rel.:  -3.191 kA/cm
Quasi-rel.: -3.241 kA/cm

2

2

 
v

v
j

no
rm

||
)

(
 ∫v

v
dv

v
v

j
0

no
rm

no
rm

||
)

(

 
Fig. 30. ECH test: Parallel current density as a function of normalized momentum, and 
corresponding cumulative value. The result is almost the same for implementing fully-relativistic 
or quasi-relativistic operators. 
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