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Abstract/Overview

GENRAY (A.P.Smirnov and R.W.Harvey, 1995) [1] is a general ray tracing code for
the calculation of electromagnetic wave propagation and absorption in the geometrical
optics approximation.

Physical model:

1) A solution of the ray tracing equations (I.B.Bernstein and L.Friedland, 1983) [2]
in general non-axisymmetric geometry is obtained for an arbitrary form of the mag-
netic surfaces in toroidal geometry. The magnetic field is input with a numerical eqdsk
file giving the axisymmetric flux surfaces. Additional perturbations of the toroidal and
poloidal magnetic field may be specified in order to study the influence of the magnetic
ripple.

2) The code provides several alternative dispersion functions D: (1) cold plasma
dispersion with different numbers of species, (2) full (T.H.Stix, 1992)[3] hot non-
relativistic plasma dispersion with shifted two-temperature (T‖,T⊥) Maxwellian dis-
tributions and multiple plasma species coded by Forest, and (3) the relativistic electron
plasma using the (E.Mazzucato et al., 1987) [5] or I.P.Shkarofsky dispersion functions.
Using these dispersion functions, ray tracing is performed for several types of radio
waves: ECR, LH, FW, EBW, IBW....

3) The radial profiles of density, temperature and effective charge Ze f f can be input
in pseudo-parabolic form or in tables for spline fits. In order to interface flexibly with
related codes, a choice of variables for the minor radius is provided: the square root of
toroidal volume, toroidal or poloidal flux, and poloidal cross-sectional area.

4) The code can recalculate the plasma density or Ze f f using the given temperature
and plasma pressure specified in the eqdsk file. Plasma density perturbations in the
form of the toroidal and poloidal harmonics may be specified.

5) A model is provided for angular scattering of the perpendicular refractive index−→N ⊥of the rays. This enables, for example, study of the effects of wave scattering by
drift waves at the reflection point near the plasma boundary.

6) The calculation of absorption of wave power along the wave trajectory is de-
termined by the imaginary part of the perpendicular refractive index ImN⊥using : (1)
the anti-hermitian part of the dielectric tensor for hot non-relativistic plasma; (2) the
relativistic electron plasma Mazzucato approximation for the fully relativistic electron
plasma; or (3) the asymptotic formula for ImN⊥for LH and FW.
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CONTENTS 5

7) The code has two models for wave launch: (1) a cone of rays launched from an
arbitrary point outside the plasma (for EC waves); and (2) grill launch of a specified
n‖-power spectrum P(n‖) of waves from points inside the plasma (for LH, FW, BW).
The code then calculates the set of trajectories for these types of wave launch.

8) Along the trajectory the code calculates the current drive efficiency using: (1)
the asymptotic formula for FW and LH waves; (2) the CURBA code (R.H.Cohen) that
takes into consideration relativistic resonance conditions and the influence of trapped
electrons.

9) Along the trajectory, the code calculates the wave electric field polarization (for
coupling to the CQL3D Fokker-Planck code) using several approximations for the di-
electric tensor.

10) Based on linear damping of the wave energy, the code calculates radial profiles
of absorbed power and current drive.

Numerical method
1) For the numerical solution of the ray-tracing equations the code can use: a 4th

order Runge-Kutta method with constant and variable time step, or a 5th order Runge-
Kutta method with variable time step.

2) The ray-tracing equations have the form of Hamiltonian equations. The dis-
persion function plays the role of a Hamiltonian in these equations. For Hamiltonian
conservation the code can use different forms of corrections along the trajectory.

3) The code has the capability to form the numerical derivatives required for dif-
ferencing of the ray equation, given only an expression for the local wave dispersion
relation. This enables ready use of given dispersion relation solvers for ray tracing.
The cold plasma and Stix dispersion relation in the code also have explicit calculation
of derivatives from analytic expressions.

The code has a modular structure that permits adding new forms of magnetic fields,
dispersion functions, absorption formula, and numerical methods.



Chapter 1

Ray tracing equations

1.1 Coordinate system
We use the cylindrical space coordinates −→R = (r,ϕ,z); r is the major radius, ϕ is the
toroidal angle, and z is along the vertical axis. The conjugate coordinates for the re-

fractive index −→N = c
−→k
ω are −→N = (Nr, M = rNϕ, Nz). Here −→k is wave vector; c is speed

of light; ω = 2π f ; f is wave frequency. We will use t for time.

1.2 Geometric optics equations
If the wave length is smaller than the local space scale and the wave frequency is bigger
than the inverse time of the change of the plasma parameters, then we can use the geo-
metric optics equations for the wave description (B.I.Bernstein and L.Friedland,1983)
[2]. In the geometric optic approximation the wave electric field is composed of the
slowly varying amplitude −→E (

−→R , t) and the fast variation exp(iψ(
−→R , t)). The function

ψ determines the wave vector −→k (
−→R , t) and the wave frequency ω = ω(

−→R , t); −→k = ∇ψ,
ω =−∂ψ/∂t. The quantities −→k and ω are the slowly varying functions. The wave elec-
tric field is determined by the dielectric tensor ε̂(ω,

−→k ), written for the uniform plasma
with local parameters along the ray.

Let N‖ = (
−→N ·−→B )/B be the longitudinal component of the refractive index along the

magnetic field −→B ; −→N ⊥ = (
−→N −−→N ‖) is the perpendicular component of the refractive

index. The local orthogonal coordinate system (−→e x,−→e y,−→e z)[3] for the wave electric
field polarization −→E can be introduced by the following formula:

−→e z =
−→B
B

, −→e x =
−→N ⊥
N⊥

, −→e y = [−→e z ×−→e x] . (1.1)

In this system of coordinates, the wave electric field and the refractive index have the
form:

−→E = Ex
−→e x +Ey

−→e y +Ez
−→e z, (1.2)
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CHAPTER 1. RAY TRACING EQUATIONS 7

−→N = N⊥−→e x +N‖−→e z. (1.3)

The amplitude of the wave electric field −→E is the solution of the linear system:

D̂·−→E =
−→0, (1.4)

D̂ = Dαβ = εαβ +NαNβ −N2δαβ, (1.5)




εxx −N2
‖ εxy εxz +N‖N⊥

εyx εyy −N2 εyz
εzx +N‖N⊥ εzy εzz −N2

⊥







Ex
Ey
Ez


 = 0. (1.6)

The condition for the existence of the non-trivial solution of the system (1.6) gives the
dispersion relation:

D(
−→R , N‖, N⊥, ω) = detDαβ = 0. (1.7)

This dispersion function, calculated for the Hermitian part of the dielectric tensor ε̂ ,
determines the ray trajectory from the following system of the ODE:

dr
dt = − c

ω
∂D/∂Nr
∂D/∂ω , dNr

dt = c
ω

∂D/∂r
∂D/∂ω

dϕ
dt = − c

ω
∂D/∂M
∂D/∂ω , dM

dt = c
ω

∂D/∂ϕ
∂D/∂ω

dz
dt = − c

ω
∂D/∂Nz
∂D/∂ω , dNz

dt = c
ω

∂D/∂z
∂D/∂ω .

(1.8)

1.3 Normalized variables and geometrical optics equa-
tions

In the code we use normalized variables. We will introduce the following characteristic
parameters:

r0, t0 = r0/c, ω0 = 2π f0. (1.9)

The normalized variables take the form:

t̂ = t/t0, (1.10)

R̂ = (ẑ = z/r0, r̂ = r/r0,ϕ), (1.11)

−→N = (Nz,Nr,M̂ = M/r0 = r̂Nϕ), (1.12)

ω̂ = ω/ω0. (1.13)

We use the following equations, taking the length r0 = 1 m:
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dr̂r0
dt̂t0

= − c
ω̂

∂D/∂Nr
∂D/∂ω̂ , dNr

dt̂t0
= c

ω̂
∂D/∂r̂r0
∂D/∂ω̂

dϕ̂
dt̂t0

= − c
ω̂

∂D/∂Mr0
∂D/∂ω̂ , dM̂r0

dt̂t0
= c

ω̂
∂D/∂ϕ
∂D/∂ω̂

dẑr0
dt̂t0

= − c
ω̂

∂D/∂Nz
∂D/∂ω̂ , dNz

dt̂t0
= c

ω̂
∂D/∂ẑr0
∂D/∂ω̂ .

(1.14)

Thus, we have this system of he ray-tracing equations in normalized variables:

dr̂
dt̂ = − 1

ω̂
∂D/∂Nr
∂D/∂ω̂ , dNr

dt̂ = 1
ω̂

∂D/∂r̂
∂D/∂ω̂

dϕ
dt̂ = − 1

ω̂
∂D/∂M̂
∂D/∂ω̂ , dM̂

dt̂ = 1
ω̂

∂D/∂ϕ
∂D/∂ω̂ .

dẑ
dt̂ = − 1

ω̂
∂D/∂Nz
∂D/∂ω̂ , dNz

dt̂ = 1
ω̂

∂D/∂ẑ
∂D/∂ω̂

(1.15)

In these variables, the group velocity −→V gr = ( dr
dt , r dϕ

dt , dz
dt ) is normalized by the speed

of light:

−̂→V gr = (
dr̂
dt̂

, r̂
dϕ
dt̂

,
dẑ
dt̂

) =
−→V gr/c. (1.16)

In the normalized form the right-hand side of the ray-tracing equations and the values
of the variables may calculated with values near the unity. This may useful as a means
to reduce numerical error due to finite computer word length.



Chapter 2

Magnetic field

2.1 Axisymmetric magnetic field
An axisymmetric magnetic field is specified using data in the input file equilib.dat.
This file has an eqdsk file format {Lang Lao]. The specified magnetic field is of the
form:

−→B = −→e ϕBϕ +
−→B p. (2.1)

The toroidal magnetic field is given in equilib.dat through the function f ,

Bϕ =
1
r

f (ψ), (2.2)

and the poloidal magnetic field the a tabulation of the the poloidal flux function ψ,

−→B p =
−→e r

r
∂ψ
∂z

−
−→e z

r
∂ψ
∂r

. (2.3)

(−→e r, −→,eϕ, −→e z) are unit vectors of the configuration space cylindrical coordinate sys-
tem.

2.2 Variables in the equilib.dat file
The equilib.dat file contains the array peqd(i, j) = ψi j for the poloidal flux function
given at the points on an equi-spaced rectangular mesh r = x, z = y,

(xi,y j), i = 1, ...nxeqd, j = 1, ...nyeqd. (2.4)

It also contains the array f j = f (ψ j) given at equi-spaced points of the poloidal flux
mesh ψ j, j = 1,nxeqd, values varying form the magnetic axis to the limiting flux sur-
face. The variables in the equilib.dat file are given in the following units: lengths
(z,r) are in (m); toroidal magnetic field Bϕ is in (T ); poloidal magnetic flux function
ψ is in (Wb = T ∗m2) weber; toroidal function f = rBϕ is in (T ∗m); pressure p in
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Pa. The code reads the arrays peqd(i, j) = ψi j and f j = f (ψ j) and calculates spline
approximations for the poloidal function ψ(z,r) and the toroidal function f = f (ψ).

2.3 Ripple magnetic field

We take into account the influence of ripple magnetic field δ−→B = (δBr,δBϕ,δBz) only
on the value of the total magnetic field −→B total =

−→B + δ−→B ; we use the approximation
that the flux surfaces remain axisymmetric, for purposes of specifying plasma den-
sity, Ze f f , and temperature, and the flux surfaces are calculated using axisymmetric
data from equilib.dat file. The stationary vacuum ripple magnetic field must have the
potential F , δ−→B = ∇F . The ripple field potential can be found in the form:

F = δripple sin(Nloopϕ)g(r,z). (2.5)

This potential gives the toroidal and poloidal ripple fields:

Br =
∂F
∂r

, Bϕ =
1
r

∂F
∂ϕ

, Bz =
∂F
∂z

. (2.6)

We use this model form for the toroidal ripple field:

F = δripple sin(Nloopϕ)
b0R0

Nloop
(

r
Rmax

)Nloop . (2.7)

This formula is suitable for approximation of the ripple field in DIII-D. The corre-
sponding function g(r,z) has the form:

g(r) = (b0R0/Nloop)(r/Rmax)
Nloop . (2.8)

Here, Nloop is the number of toroidal field coils; b0 is the value of the toroidal magnetic
field at the magnetic axis; R0 is the magnetic axis major radius; Rmax is the parameter
which is taken equal to the major radius at the outer plasma edge; δripple gives the
relative amplitude of the ripple field.

Alternatively, the code uses another form of the ripple potential:

g(r,z) = (b0R0/Nloop)I0(Nloopρ(r,z)/I0(Nloop). (2.9)

Here, I0 is the modified Bessel function; ρ(z,r) is the small radius; δripple is the ampli-
tude of the ripple field at the last flux surface at small radius ρ = 1.

The input data nloop=Nloop and deltripl=δripple and the switch i_ripple are set in
the genray.dat file.

The given switch chooses the model for the ripple field:
if i_ripple=1 code uses the formula 2.8
if i_ripple=2 code uses the formula 2.9
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2.4 General radial coordinates
Any positive monotonic function on the poloidal flux can be used as a radial coordinate.
The switch indexrho in the genray.dat file identifies the choice of four normalized ra-
dial coordinates implemented in the code:

indexrho=1

ρs(ψ) =
√

S(ψ)/S(ψlim). (2.10)

indexrho=2

ρΦt (ψ) =
√

Φtor(ψ)/Φtor(ψlim). (2.11)

indexrho=3

ρVt (ψ) =
√

Vtor(ψ)/Vtor(ψlim). (2.12)

indexrho=4

ρψ1/2(ψ) =
√
|(ψ−ψmag)/(ψlim −ψmag)|. (2.13)

indexrho=5

ρψ(ψ) = (ψ−ψmag)/(ψlim −ψmag) (2.14)

Here, S(ψ) is the area of the poloidal cross-section; Vtor(ψ) is torus volume within
the poloidal cross-section ψ = const; Φtor(ψ) is the toroidal flux inside the surface
ψ = const; ψmag is the poloidal flux at the magnetic axis and ψlim is the poloidal flux
at the plasma edge. To find S(ψ), Vtor(ψ), and Φtor(ψ), the code uses poloidal and
toroidal fields calculated using ψ(r,z) and f (ψ).



Chapter 3

Plasma components

3.1 Plasma species

The plasma consists of the number nbulk plasma species. The sth plasma species (s = 1
for electrons, s = 2,3, ..,nbulk for ion species) has density ns, charge Zs > 0, and mass
ms. We use the following notation:

Xs ≡
ω2

ps

ω2 , Ys ≡
ωcs

ω
. (3.1)

Here,

ω2
ps ≡ 4πnsZ2

s e2

ms
is the plasma frequency ;

ωcs ≡ ZseB
msc is the gyro-frequency ;

e > 0 is the electron charge;

Ze f f ≡ ∑i=nbulk
i=2 Z2

i ni/ne is the effective charge.

3.2 Density, temperature and Ze f f profiles

3.2.1 Axisymmetric radial profiles
In the axisymmetric case, there are two ways to input density, temperature and Ze f f
profiles as a function of the small radius.

Quasi-parabolic profiles

ns(ρ) = (n0s −nbs)(1−ρk1ns )k2ns +nbs , (3.2)

Ts(ρ) = (T0s −Tbs)(1−ρk1Ts )k2Ts +Tbs , (3.3)

12
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Ze f f (ρ) = (Ze f f0 −Ze f fb)(1−ρk1z)k2z +Ze f fb . (3.4)

Profile arrays

One dimensional arrays for the density ns(ρk), temperature Ts(ρk) and Ze f f (ρk) profiles
are specified on a radial mesh ρk. k=1,...ndens. A spline approximation of this data is
used to create the radial profiles as a function of the radius.

3.2.2 Non axisymmetric density variations
To add plasma density δn fluctuations we use the following form for the full plasma
density:

n(z,r,ϕ) = n(ρ)(1+δn0β(ρ,θ,ϕ)). (3.5)

The function β is assumed to be of the form:

β(ρ,θ,ϕ) = βρ(ρ)βθ(θ)cos(lϕϕ), (3.6)

βθ(θ) = 0.5(1+ cos(lθϑ)), (3.7)

βρ(ρ) = 0.5∗ (1+
2
π

arctan(
(ρ−ρ0)

σ2
n

))
ρ−ρ0

1−ρ0

. (3.8)

Here
δn0 is the the relative amplitude of the density fluctuations,
βρ(ρ) sets the radial form of the fluctuation, For the small values of σn it is the

smooth differentiable approximation of the following function G(ρ,ρ0).

βρ(ρ) ≈ G(ρ,ρ0) =

{
0,0 ≤ ρ < ρ0

(ρ−ρ0)/(1−ρ0),ρ0 < ρ ≤ 1
The function βθ(θ) gives the poloidal form of the density fluctuations. The input

data for the density fluctuations are given in genray.dat file: var0=δn0, sigman=σn,
an=ρ0, denm=lθ, denn=lϕ

3.2.3 Plasma neutrality and plasma charge Ze f f .
The ion charges Zs and densities ns(ρ) should satisfy the plasma neutrality and generate
the given plasma charge Ze f f (ρ). Thus these input data are dependent upon one other.

There are several possibilities in GENRAY for the generation of electron and ion
density radial profiles and plasma plasma charge. The variable izeff in the GEN-
RAY.dat file specifies these possibilities:

1) izeff=0

Input data from genray.dat file:
nbulk is the number of plasma species;
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charge(s) = Zs > 0, s = 2, ..., ,nbulk are the ion charges;
ns(ρ), s = 2, ..., ,nbulk are the ion density radial profiles;
Ts(ρ), s = 1, ..., ,nbulk are the electron and ion temperature radial profiles.

GENRAY calculates electron density profile ne(ρk) and effective charge profile
Ze f f = Ze f f (ρk) at the points of the radial mesh ρk = (k−1)/(ndens−1), k = 1, ...,ndens.
The parameter ndens (given in param.i file) is the number of points of the radial ρ mesh.
Using the given ion charges Zs and the ion density profiles ns(ρ) (analytic or tabular),
we have:

ne(ρk) = ns=1(ρk) =
s=nbulk

∑
s=2

Zsns(ρk) (3.9)

Ze f f (ρk) =
s=nbulk

∑
s=2

Z2
s ns(ρk)/n1(ρk). (3.10)

Then, for general radius ρ GENRAY calculates the functions ne=n1(ρ) and Ze f f (ρ) as
spline approximations of the data on the given radial mesh ρk. k=1,...ndens.

2) izeff=1

Input data from genray.dat file:

nbulk is the number of the plasma species, nbulk≥ 3;
charge(s) = Zs > 0, s = 2, ..., ,nbulk are the ion charges;
ns(ρ), s = 1, ..., ,nbulk−2 are the electron and ion density radial profiles;
Ze f f (ρ) is the plasma effective charge;
Ts(ρ), s = 1, ..., ,nbulk are the electron and ion temperature radial profiles.

In this case GENRAY calculates the ion density profiles nnbulk−1 and nnbulk using
given Ze f f (ρ) , ion charges Zs and given electron n1(ρ) and ion ns(ρ), s = 2, ...,(nbulk−
2) density profiles from the following system:

Ze f f (ρ) =
i=nbulk−2

∑
i=2

Z2
i n̂i(ρ)+Z2

nbulk−1n̂nbulk−1(ρ)+Z2
nbulkn̂nbulk(ρ), (3.11)

1 =
i=nbulk−2

∑
i=2

Zin̂i(ρ)+Znbulk−1n̂nbulk−1(ρ)+Znbulkn̂nbulk(ρ). (3.12)

Here, n̂i(ρ) = ni(ρ)/ne(ρ) is the ratio of ion density (i = 2, ...,nbulk) to electron density.
We see (from3.11, 3.12) that this case (izeff=1) does not make sense if nbulk ≤ 2. The
nbulk= 3 case is a standard one in which only the electron density and effective charge
profiles ns(ρ), Ze f f (ρ) and 2 ionic charges, Zs, s = 2,3, need be given.

For nbulk ≥ 3, then consider the system of equations (3.11) and (3.12).
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a) If Znbulk 6= Znbulk−1 , then from equations (3.11) and (3.12) we have:

n̂nbulk =
Ze f f −Znbulk−1 +∑i=nbulk−2

i=2 Zin̂i(Znbulk−1 −Zi)

Znbulk(Znbulk −Znbulk−1)
, (3.13)

and

n̂nbulk−1 =
Znbulk −Ze f f −∑i=nbulk−2

i=2 Zin̂i(Znbulk −Zi)

Znbulk−1(Znbulk −Znbulk−1)
. (3.14)

If nbulk = 3, then the summations ∑i=nbulk−2
i=2 in 3.21 and 3.22are equal to zero.

If the equations 3.21, 3.22 give negative values n̂nbulk or n̂nbulk−1, GENRAY generates
a warning and stops.

b) Znbulk = Znbulk−1, then equations (3.11) and (3.12) could not determine n̂nbulk or
n̂nbulk−1, and code will give the warning and stop.

3) izeff=2

Input data from the genray.dat file is the following:

nbulk is the number of plasma species;
charge(s) = Zs > 0, s = 2, ..., ,nbulk are the ion charges;
ns(ρ), s = 1, ..., ,nbulk are the electron and ion density radial profiles;
Ze f f (ρ) is the plasma charge.

In this case the input Ze f f (ρ) does not coincide with the effective plasma charge cal-
culated by formula (3.10). This case can be useful when we use the electron Mazzucato
dispersion but Ze f f will be necessary for the calculations of current drive efficiency.

4) izeff=3

The input data from genray.dat file is the following:

nbulk is the number of plasma species;
charge(s) = Zs > 0 s = 2, ...,nbulk are the ion charges;
ns(ρ), s = 2, ..., ,nbulk are the ion density radial profiles.

In this case we will use the eqdsk pressure p(ρ).
It is assumed that the ion temperatures are equal to the electron temperature Te(ρ) =

Ti(ρ). In this case GENRAY calculates the electron density n1(ρ) from the charge
neutrality condition (3.9) , the plasma charge Ze f f (ρ) from (3.10), and Te(ρ) = Ti(ρ)
from (3.17). The plasma pressure is determined by the formula:

p = n1T1 +
nbulk

∑
i=2

niTi. (3.15)

Here, T1 is electron temperature , Ti (i = 2,nbulk) is ion temperature. Let all ion
temperature be equal to electron temperature:
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Ti = Te, i = 2,nbulk. (3.16)

From (3.16) we have:

T1 = p/(n1 +
nbulk

∑
i=2

ni). (3.17)

We use the ion density radial profiles from input equilib.dat file ni(ρ), i = 2, ...,nbulk.
n1(ρ) and Ze f f (ρ) are calculated as stated above. The code calculates density n in
1019m−3, pressure p in Pa and temperature T in KeV . To get the temperature in KeV ,
we change Eq. 3.17 to the following form:

T1 =
p

1.6 ·103(n1 +∑nbulk
i=2 ni)

. (3.18)

For this case the limit of the number of the plasma species is nbulk ≥ 2.

5) izeff=4

The input data from genray.dat file is the following:

nbulk is the number of plasma species; cases for nbulk≥ 1 are enabled;
charge(s) = Zs > 0, s = 2, ..., ,nbulk are the ion charges;
ns(ρ), s = 2, ..., ,nbulk−2 are the ion density radial profiles;
Ze f f (ρ) is the plasma charge;
Ts(ρ), s = 1, ..., ,nbulk are the electron and ion temperature radial profiles.

In this case we will use the eqdsk pressure p(ρ).
In that case GENRAY calculates the electron n1(ρ) and two ion density radial pro-

files nnbulk−1(ρ) and nnbulk(ρ) using the given Ze f f (ρ), ion charges Zs , pressure p(ρ)
and the given ion ns(ρ), s = 2, ...,(nbulk−2) density profiles and temperature profiles
Ts(ρ), s = 1, ...,nbulk. We introduce the normalized ion temperatures T̂i = Ti/T1. Eq.
(3.23) gives:

p/T1 = n1 +
i=nbulk

∑
i=2

niT̂i. (3.19)

For T in Kev , p in Pa and n in 1019m−3, the formula (3.19) has the form:

p/T1 = 1.6 ·103(n1 +
i=nbulk

∑
i=2

niT̂i). (3.20)

If nbulk = 1:
In this case GENRAY sets Ze f f (ρ) = 1 and n1(ρ) = p(ρ)/T1(ρ)/(1.6 ·103).

If nbulk = 2:
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In this case GENRAY sets Ze f f (ρ) = Z2 , n2(ρ) = n1(ρ)/Z2, using the plasma neu-
trality, and gives n1(ρ) = p(ρ)/T1(ρ)/(1.6 ·103)/(1+ T̂2/Z2), using3.20.

If nbulk ≥ 3
a) If Znbulk 6= Znbulk−1
From equations (3.21), (3.22) and (3.23) we have:

n̂nbulk =
Ze f f −Znbulk−1 +∑i=nbulk−2

i=2 Zin̂i(Znbulk−1 −Zi)

Znbulk(Znbulk −Znbulk−1)
(3.21)

n̂nbulk−1 =
Znbulk −Ze f f −∑i=nbulk−2

i=2 Zin̂i(Znbulk −Zi)

Znbulk−1(Znbulk −Znbulk−1)
(3.22)

p = n1T1 +
nbulk

∑
i=2

niTi (3.23)

p = n1T1 +n1 ∑nbulk−2
i=2 n̂iTi +Tnbulk−1n1

Znbulk−Ze f f −∑i=nbulk−2
i=2 Zin̂i(Znbulk−Zi)

Znbulk−1(Znbulk−Znbulk−1)
+

Tnbulkn1
Ze f f −Znbulk−1+∑i=nbulk−2

i=2 Zi n̂i(Znbulk−1−Zi)

Znbulk(Znbulk−Znbulk−1)

(3.24)

n1(T1 +Tnbulk−1
Znbulk−Ze f f

Znbulk−1(Znbilk−Znbulk−1)
+Tnulk

Ze f f −Znbulk−1
Znbulk(Znbulk−Znbulk−1)

) = p−
−sum3+Tnbulk−1

sum1
Znbulk−1(Znbulk−Znbulk−1)

−Tnbulk
sum2

Znbulk(Znbulk−Znbulk−1)
.

(3.25)

We use the following definitions:

sum1 =
i=nbulk−2

∑
i=2

Zini(Znbulk −Zi), (3.26)

sum2 =
i=nbulk−2

∑
i=2

Zini(Znbulk−1 −Zi), (3.27)

sum3 =
i=nbulk−2

∑
i=2

niTi. (3.28)

If nbulk = 3 these sums are equal to zero.
Eq. (3.25) gives the electron density:

n1 =
p− sum3+Tnbulk−1

sum1
Znbulk−1(Znbulk−Znbulk−1)

−Tnbulk
sum2

Znbulk(Znbulk−Znbulk−1)

T1 +Tnbulk−1
Znbulk−Ze f f

Znbulk−1(Znbulk−Znbulk)
+Tnbulk

Ze f f −Znbulk−1
Znbulk(Znbulk−Znbulk−1)

. (3.29)

With density in 1019m−3, pressure in Pa, and temperature in KeV , then the formula
(3.29) has the following form:
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n1 =
p/(1.6 ·103)− sum3+Tnbulk−1

sum1
Znbulk−1(Znbulk−Znbulk−1)

−Tnbulk
sum2

Znbulk(Znbulk−Znbulk−1)

T1 +Tnbulk−1
Znbulk−Ze f f

Znbulk−1(Znbulk−Znbulk)
+Tnbulk

Ze f f −Znbulk−1
Znbulk(Znbulk−Znbulk−1)

.

(3.30)
GENRAY calculates electron density n1(ρ) using (3.30) and ion densities nbulk(ρ),

nbulk−1(ρ) using (3.21), (3.22).
b) If Znbulk = Znbulk−1
In this case the plasma charge cannot be arbitrary. It must be equal to the value de-

termined by equation 3.10. GENRAY will stop the calculation and will give a warning
in this case.



Chapter 4

Dispersion relations

GENRAY uses several different dispersion function models:
1) Magnetized cold plasma with electrons and an arbitrary number of ions.
2) Magnetized hot non-relativistic plasma with electrons and an arbitrary number

of ions. The distribution of each species is a shifted, two-temperature Maxwellian.
3)The Mazzucato relativistic approximation of the dielectric tensor for magnetized

relativistic electron plasma.
4) The Shkarofsky relativistic approximation of the dielectric tensor for magnetized

relativistic electron plasma.
5) The dispersion relations for non-Hermitian dielectric tensors proposed in [2].

This form of the dispersion function is realized for Mazzucato electron relativistic ten-
sor and for hot non-relativistic plasma

The switch id specifies which dispersion relation model is to be used. (Ref.4)

4.1 Magnetized cold plasma
For magnetized cold plasma, we use the following form of the dielectric tensor εαβ
(Ref.3) (N.A.Krall and A.W.Trivelpiece, 1973) [4]:

εcoldαβ =




ε⊥ ig
−ig ε⊥

ε‖


 , (4.1)

εxx = εyy = ε⊥, εxy = ig⊥, εyx = −ig⊥, εzz = ε‖.

ε⊥ = 1−
s=nbulk

∑
s=1

ω2
ps

ω2 −ω2
s
, (4.2)

g = −
ω2

peωce

ω(ω2 −ω2
ce)

+
i=nbulk

∑
i=2

ω2
piωci

ω(ω2 −ω2
ci)

, (4.3)

ε‖ = 1−
s=nbulk

∑
s=1

ω2
ps

ω2 . (4.4)

19
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Here, electron ωce and ion gyro-frequencies ωci have the same sign. We can rewrite
the tensor components using (3.1):

ε⊥ = 1−
s=nbulk

∑
s=1

Xs

1−Y2
s

, (4.5)

g = − XeYe

1−Y2
e

+
i=nbulk

∑
i=2

XiYi

1−Y2
i

, (4.6)

ε‖ = 1−
s=nbulk

∑
s=1

Xs. (4.7)

Here electron Y and ion gyro-frequenciesYi have the same sign. We will use θ to be the
angle between the magnetic field −→B and the refractive index −→N , cosθ = (

−→B ·−→N )/BN.
For the given tensor, the dispersion relation (1.5) can be written in the following form:

id=1

Dcold = AN4 +BN2 +C = 0. (4.8)

Here,
A = ε1 sin2 θ+ ε3 cos2 θ, (4.9)

B = −ε1ε3(1+ cos2 θ)− (ε2
1 − ε2

2)sin2 θ, (4.10)

C = ε3(ε2
1 − ε2

2), (4.11)

ε1 = ε⊥, ε2 = g, ε3 = ε‖
The given tensor has singularity at the points of Y 2

s = 1. To avoid these singularities,
we multiply all tensor elements by ∆ = (1−Yβ). We can choose plasma designator β
to avoid singularity along the trajectory. For example, if the ray can reach the electron-
resonance point along the trajectory, we choose β = 1 to avoid singularity at this point.

For some cases, it is convenient to rewrite the dispersion function so that it describes
only one given wave mode:

id=2

Dcold = N2 − −B+ ioxm
√

B2 −4AC
2A

= 0. (4.12)

Here, ioxm = ±1 determines the type of wave mode to be used.

4.2 Magnetized hot non-relativistic plasma (id=6)

4.2.1 General formula
For non-relativistic hot plasma, GENRAY contains hot dielectric tensor in the form
(T.H.Stix, 1992) [3]:
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εhotαβ(ω,
−→k ) = δαβ +∑

s
χsαβ(ω,

−→k ). (4.13)

Here, the summation is the plasma species and susceptibilities s, χsαβ(ω,
−→k ). For a

shifted Maxwellian distribution with different temperatures Ts‖ parallel and Ts⊥perpendicular
to magnetic field and the drifting velocity Vs(parallel to the magnetic field ), the sus-
ceptibilities have the form:

χ̂s = ê‖ê‖
2ω2

ps

ωk‖w2
s⊥

Vs +
ω2

ps

ω

n=∞

∑
n=−∞

exp(−λs)Ŷn(λs), (4.14)

Ŷn(λ) =




nIn
λ An −in(In − I

′
n)An

k⊥
Ωs

nIn
λ Bn

in(In − I
′
n)An ( n2

λ In +2λIn−2λI
′
n)An

ik⊥
Ωs

(In − I
′
n)Bn

k⊥
Ωs

nIn
λ Bn − ik⊥

Ωs
(In − I)

′
nBn

2(ω−nΩs)
k‖w2

s⊥
InBn


 . (4.15)

Here,
Vs =< v‖ >s is the drift velocity ;

ws⊥ =
√

2Ts⊥
ms

is the a perpendicular thermal velocity;

ws‖ =

√
2Ts‖
ms

is the parallel thermal velocity;

Ts = (Ts‖ +2Ts⊥)/3 is the average thermal velocity;

tpops =
Ts⊥
Ts‖

is the ratio of perpendicular and parallel temperatures;

λs =
k2
⊥w2

s⊥
ω2

cs
=

N2
⊥w2

s⊥
Y 2

s c2 =
N2
⊥β2

s tpops
Y 2

s
;

βs =
ws‖

c is the normalized longitudinal thermal velocity;
Ωs is the algebraic gyro-frequency; it has different signs for electrons Ωe = −ωce

and for ions Ωi = ωci .
In(λ) is the modified Bessel function with argument λ and I

′
n = dIn(λ)/dλ.

The coefficients A and B have the form;

An =
1
ω

T⊥−T‖
T‖

+
1

k‖w‖

(ω− k‖V −nΩ)T⊥+nΩT‖
ωT‖

Z0, (4.16)

Bn = 1
k‖

(ω−nΩ)T⊥−(k‖V−nΩ)T‖
ωT‖

+ 1
k‖

ω−nΩ
k‖w‖

(ω−k‖V−nΩ)T⊥+nΩT‖
ωT‖

Z0.
(4.17)

Z0 = Z(ζn) is the plasma dispersion function:

Z0(ζn) = i
√

πsgn(k‖)exp(−ζ2
n)−2S(ζn), (4.18)

S(ζ) ≡ exp(−ζ2)

Z ζ

0
exp(z2)dz, (4.19)
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ζn =
ω− k‖V −nΩ

k‖w‖
. (4.20)

We transform the formula (4.14) for the susceptibilities to the following:

χsαβ = δαzδβz
2Xs

N‖β2
s tpops

Vs

c
+Xs

n=∞

∑
n=−∞

exp(−λs)
̂̃Y n(λs), (4.21)

̂̃Y n = ωŶn(λ) =




nIn
λ Ãn −in(In− I

′
n)Ãn

ωN⊥
Ω

nIn
λ B̃n

in(In − I
′
n)Ãn ( n2

λ In +2λIn−2λI
′
n)Ãn

iωN⊥
Ω (In − I

′
n)B̃n

ωN⊥
Ω

nIn
λ B̃n − iωN⊥

Ω (In − I
′
n)B̃n

2(1−n Ω
ω )

N‖β2tpop
InB̃n


 ,

(4.22)

Ãn = ωAn = (tpop−1)+
1

N‖β
((1−N‖

V
c
−n

Ω
ω

)tpop +n
Ω
ω

)Z0(ζn), (4.23)

B̃n = ωBn/c = 1
N‖

((1−n Ω
ω )tpop − (N‖

V
c −n Ω

ω ))+

+ 1
N‖

(1−n Ω
ω )

N‖β ((1−N‖
Ω
ω )tpop +n Ω

ω )Z0(ζn)
, (4.24)

ζn =
1−N‖

V
c −n Ω

ω
N‖β

. (4.25)

It is essential to note that GENRAY uses a positive sign for electron and for ion charges
Zs > 0. The relation Ys (3.1)of gyro-frequencies ωcsto wave frequency ω has the same
sign for electrons and for ions. We have chosen this form for the cold plasma dispersion
relation (4.3). For the hot plasma of electrons, we use:

Ωe

ω
= −ωce

ω
= −Ye = −Y1; (4.26)

but for the ions, we use:

Ωi

ω
=

ωci

ω
= Yi, i = 2, ...,nbulk. (4.27)

The dispersion relation for hot non-relativistic plasma has the form:
id=6

D = Dhot(N‖,N⊥,
−→X ,

−→Y ,
−→T ,−→tpop) = 0. (4.28)

Here, −→X = Xs,
−→Y = Ys,

−→T = Ts, −→tpop = tpops , s = 1, ...,nbulk.

4.2.2 Computation
Calculation of the dispersion function (4.28) must estimate the number of gyro-harmonics
used. We can estimate the number of harmonics using features of the plasma functions
Z(ζn) and the product of the modified Bessel functions In(λ) multiplied by exp(−λ).

For a large value of the argument |x| > 1, the asymptotic part of plasma dispersion
function S(x) = Re(Z0(x)) (1.5) has the form:

S(x) ' 1
2x

. (4.29)
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The number of necessary gyro-harmonics can be evaluated from the following condi-
tion:

|S(ζn)| =
1

2|ζn|
≥ εn. (4.30)

Here , εn is accuracy. The condition (4.30) gives |ζn| ≤ 1
2εn

:

|1−N‖
V
c

+n
Ω
ω
| ≤

|N‖|β
2εn

. (4.31)

Here we introduce,

nmin = min((−1+N‖
V
c
−

|N‖|β
2εn

)/
Ω
ω

), (−1+N‖
V
c

+
|N‖|β
2εn

)/
Ω
ω

)), (4.32)

nmax = max((−1+N‖
V
c
−

|N‖|β
2εn

)/
Ω
ω

), (−1+N‖
V
c

+
|N‖|β
2εn

)/
Ω
ω

)). (4.33)

The interval of the numbers n of the gyro-harmonics (determined from the plasma
dispersion function Z0(ζn) ) has the form:

nmin < n < nmax. (4.34)

In particular, the number of cyclotron resonance harmonic nc can be obtained from
condition Z0(ζnc) = 0. This gives ζnc = 0 and

nc = (−1+N‖
V
c

)/
Ω
ω

. (4.35)

We can see that nc = 0.5(nmin +nmax). The production exp(−λ)In(λ) decreases sharply
as gyro-harmonics number n increases. This results in the additional condition for the
numbers n :

exp(−λ)In(λ) ≥ εn. (4.36)

The code has parameter nmax (inside subroutine harmon_z)that determines the maxi-
mum number of modified Bessel functions calculated. Now this parameter is equal to
nmax = 3000. If |nmin| < nmax and |nmax| < nmax, the code calculates only nMax =
max(|nmin|, |nmax|) modified Bessel functions. In some cases boundaries nmin or nmax
can be larger than the parameter nmax. In such situations, the code changes nmin or
nmax to the given parameter nmax. In this case, however, condition (4.34) will not be
satisfied.

After determination of the interval for gyro-harmonics (nmin,nmax), the code cal-
culates the productions exp(−λ)In(λ) from number n = 0 until n = min(nmax, n?). At
each n, the code checks the condition (4.36). If for some number n? this production is
smaller then the given accuracy exp(−λ)In?(λ) < εn, the code takes this number as the
maximum number of harmonics to be used.
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4.3 Magnetized electron relativistic plasma in Mazzu-
cato approximation

For relativistic electron plasma, GENRAY uses the approximation of the relativistic
dielectric tensor and the dispersion relation proposed and realized as the routines by
Mazzucato (E.Mazzucato et al., 1987) [5]. This tensor contains Hermitian and anti-
Hermitian parts. It can be used for calculation of propagation and absorption of waves
in the electron cyclotron region. The dispersion function for the Hermitian dielectric
tensor has the form:

id=4
DMaz(

−→N ‖,
−→N ⊥, Xe, Ye, Te). (4.37)

4.4 Magnetized electron relativistic plasma in Shkarof-
sky approximation

For the relativistic electron plasma, GENRAY has the opportunity to use approximation
of the relativistic dielectric tensor and the dispersion relation proposed and realized as
the routines by Shkarofsky. This tensor contains Hermitian and anti-Hermitian parts.
It can be used for calculation of propagation and absorption of waves in the electron
cyclotron region. The dispersion function for the Hermitian dielectric tensor has the
form:

id=7
DShk(

−→N ‖,
−→N ⊥, Xe, Ye, Te). (4.38)

4.5 Ono dispersion function for fast waves.
For fast waves the code can use the dispersion function in the M.Ono (1995) [17]approximation
for the wave frequencies ω in the interval Ωi � ω � ωLH . To use the Ono dispersion,
choose the option id=8. This dispersion relation works for the analytical and numerical
derivatives.

The high harmonics fast wave (HHFW) dispersion relation was obtained from a
nontrivial solution of the determinant of the wave equation tensor for Maxwellian plas-
mas [3]

det




Kxx −n2
‖ −iKxyc Kxz +n⊥n‖

iKxyc Kyy −n2
‖−n2

⊥ iKyz

Kxz +n⊥n‖ −iKyz Kzz −n2
⊥


 = 0 (4.39)

It assumes that the wave frequency is high compared to the ion cyclotron frequency,
but well bellow the electron cyclotron frequency. Finite Larmor radius (FLR) effects
on electrons λe ≈ (me/mi)λi � are neglected. The terms that contribute to the electron
damping are the n=0 terms in the Kyy, Kyz, Kzy and Kzz elements of the dielectric tensor.
For the present case, it is sufficient to keep the lowest order terms in λe. If we neglect
the ion FLR terms the dielectric tensor are simplified to
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Kxxc = 1+
Xe

Y 2
e
−∑

i

Xi

1−Y 2
i

(4.40)

Kxyc =
Xe

Ye
+∑

i

XiYi

1−Y 2
i

(4.41)

Kyyc = Kxxc +n2
⊥

Xe

Y 2
e

VTe

cn‖
Z0(y0) = Kxxc +n2

⊥δm (4.42)

VTσ =
√

2Tσ/mσ,σ = e, i

δm =
Xe

Y 2
e

VTe

cn‖
Z0(y0)

y0 =
1
n‖

c
VTe

Kxzc = −n⊥n‖∑
i

XiV 2
Ti

(1−Y 2
i )2c2 = n⊥n‖δ (4.43)

δ = −∑
i

XiV 2
Ti

(1−Y 2
i )2c2

Kyz = −n⊥
V 2

Ten‖
2c2Ye

Kzze = −n⊥δxKzze (4.44)

and

Kzz ∼= 1−∑
i

Xi −
Xec2

n2
‖V

2
Te

dZ0(y0)

dy0
∼= − Xec2

n2
‖V

2
Te

dZ0(y0)

dy0
= Kzze (4.45)

δx =
V 2

Ten‖
2c2Ye

Here Ye and Yi have the same sign.
The dispersion relation can be rewritten in the following simple form

D = det




Kxxc −n2
‖ −iKxyc n⊥n‖(1+δ)

iKxyc Kxxc −n2
‖−n2

⊥(1−δm) −in⊥δxKzz

n⊥n‖(1+δ) in⊥δxKzz Kzz −n2
⊥


 = 0 (4.46)

The above determinant is convenient for solving for n⊥for given n‖ and ω, since all
K

′
s and δ,s are independent of n⊥. It has a form

D = an4
⊥ +bn2

⊥+ c = 0 (4.47)
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where

a = [(n2
‖−Kxxc)−n2

‖(1+δ)2](1−δm)

b = −K2
xy −δ2

x(n
2
‖−Kxxc)K2

zze − (n2
‖−Kxxc)(1−δm)Kzze+

+2δxn‖(1+δ)KzzeKxyc +(n2
‖−Kxxc)

2−
−n2

‖(1+δ)2(n2
‖−Kxxc)

c = [K2
xyc − (n2

‖−Kxxc)
2]Kzze

The subscripts “c” and “e” denote cold ions and kinetic electrons.
Thermal velocity VT σ =

√
2Tσ/mσ, ∂VTσ

∂Tσ
= VTσ

2Tσ
.

The simplified dielectric tensor has the form



ε11 = Kxxc ε12 = −iKxyc ε13 = n⊥n‖δ
ε21 = iKxyc ε22 = Kxxc +n2

⊥δm ε23 = −in⊥δxKzz
ε31 = n⊥n‖δ ε32 = in⊥δxKzz ε33 = Kzz


 (4.48)

To calculate the right hand side in the ray-tracing equations we need the derivatives
from the dispersion function D.

The derivatives of the dispersion function with respect to space coordinates

∂D
∂r = ∑i j

∂D
∂εi j

[
∂εi j
∂n⊥

∂n⊥
∂r +

∂εi j
∂n‖

∂n‖
∂r +∑σ(

∂εi j
∂Xσ

∂Xσ
∂r +

∂εi j
∂Yσ

∂Yσ
∂r +

∂εi j
∂Tσ

∂Tσ
∂r )]+

+ ∂D
∂n⊥

∂n⊥
∂r + ∂D

∂n‖

∂n‖
∂r

(4.49)

∂D
∂z = ∑i j

∂D
∂εi j

[
∂εi j
∂n⊥

∂n⊥
∂z +

∂εi j
∂n‖

∂n‖
∂z +∑σ(

∂εi j
∂Xσ

∂Xσ
∂z +

∂εi j
∂Yσ

∂Yσ
∂z +

∂εi j
∂Tσ

∂Tσ
∂z )]+

+ ∂D
∂n⊥

∂n⊥
∂z + ∂D

∂n‖

∂n‖
∂z

(4.50)

∂D
∂φ = ∑i j

∂D
∂εi j

[
∂εi j
∂n⊥

∂n⊥
∂φ +

∂εi j
∂n‖

∂n‖
∂φ +∑σ(

∂εi j
∂Xσ

∂Xσ
∂φ +

∂εi j
∂Yσ

∂Yσ
∂φ +

∂εi j
∂Tσ

∂Tσ
∂φ )]+

+ ∂D
∂n⊥

∂n⊥
∂φ + ∂D

∂n‖

∂n‖
∂φ

(4.51)
The derivatives of the dispersion function with respect to refractive index coordi-

nates are
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∂D
∂nr

= ∑i j
∂D
∂εi j

[
∂εi j
∂n⊥

∂n⊥
∂nr

+
∂εi j
∂n‖

∂n‖
∂nr

]+

+ ∂D
∂n⊥

∂n⊥
∂nr

+ ∂D
∂n‖

∂n‖
∂nr

(4.52)

∂D
∂nz

= ∑i j
∂D
∂εi j

[
∂εi j
∂n⊥

∂n⊥
∂nz

+
∂εi j
∂n‖

∂n‖
∂nz

]+

+ ∂D
∂n⊥

∂n⊥
∂nz

+ ∂D
∂n‖

∂n‖
∂nz

(4.53)

∂D
∂m = ∑i j

∂D
∂εi j

[
∂εi j
∂n⊥

∂n⊥
∂nm

+
∂εi j
∂n‖

∂n‖
∂m ]+

+ ∂D
∂n⊥

∂n⊥
∂m + ∂D

∂n‖

∂n‖
∂m

(4.54)

The derivatives of the dispersion function with respect to frequency are

∂D
∂ω = ∑i j

∂D
∂εi j

[
∂εi j
∂n⊥

∂n⊥
∂ω +

∂εi j
∂n‖

∂n‖
∂ω +∑σ(

∂εi j
∂Xσ

∂Xσ
∂ω +

∂εi j
∂Yσ

∂Yσ
∂ω )]+

+ ∂D
∂n⊥

∂n⊥
∂ω + ∂D

∂n‖

∂n‖
∂ω

(4.55)

The dielectric tensor elements are functions of the five parameters εi, j = εi, j(
−→X ,

−→Y ,
−→T ,n⊥,n‖).

The derivatives of the dielectric tensor elements with respect to Xe,i, Ye,i, Te,i and the
refractive index components N⊥, N‖ have the following form

∂ε11
∂Xe

= 1
Y 2

e
, ∂ε11

∂Xi
= − 1

1−Y 2
i

∂ε11
∂Ye

= −2Xe
Y 3

e
, ∂ε11

∂Yi
= − 2XiYi

(1−Y 2
i )2

∂ε11
∂Te

= 0, ∂ε11
∂Ti

= 0
∂ε11
∂n⊥

= 0
∂ε11
∂n‖

= 0

(4.56)

∂ε12
∂Xe

= −i 1
Ye

, ∂ε12
∂Xi

= −i Yi
1−Y 2

i
∂ε12
∂Ye

= i Xe
Y 2

e
, ∂ε12

∂Yi
= −iXi

1+Y 2
i

(1−Y 2
i )2

∂ε12
∂Te

= 0, ∂ε12
∂Ti

= 0
∂ε12
∂n⊥

= 0
∂ε12
∂n‖

= 0

(4.57)
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∂ε13
∂Xe

= 0, ∂ε13
∂Xi

= −n⊥n‖
V 2

Ti
(1−Y 2

i )2c2

∂ε13
∂Ye

= 0, ∂ε13
∂Yi

= −n⊥n‖
2XiV 2

Ti2Yi

(1−Y 2
i )3c2

∂ε13
∂Te

= 0, ∂ε13
∂Ti

= −n⊥n‖
XiV 2

Ti
(1−Y 2

i )2c2Ti
∂ε13
∂n⊥

= n‖δ
∂ε13
∂n‖

= n⊥δ

(4.58)

∂ε22
∂Xe

= ∂ε11
∂Xe

+n2
⊥

1
Y 2

e

VTe
cn‖

Z0(
c

n‖VTe
) = ∂ε11

∂Xe
+n2

⊥
δm
Xe

, ∂ε22
∂Xi

= ∂ε11
∂Xi

∂ε22
∂Ye

= ∂ε11
∂Ye

−n2
⊥

2Xe
Y 3

e

VTe
cn‖

Z0(
c

n‖VTe
) = ∂ε22

∂Ye
−n2

⊥
2δm
Ye

, ∂ε22
∂Yi

= ∂ε11
∂Yi

∂ε22
∂Te

= ∂ε11
∂Te

+n2
⊥

Xe
Y 2

e
(VTe

cn‖
Z0(y0)

2Te
− 1

n2
‖

dZ0
dy0

1
2Te

), ∂ε22
∂Ti

= ∂ε11
∂Ti

∂ε22
∂n⊥

= ∂ε11
∂n⊥

+2n⊥
Xe
Y 2

e

VTe
cn‖

Z0(
c

n‖VTe
) = ∂ε11

∂n⊥
+2n⊥δm

∂ε22
∂n‖

= ∂ε11
∂n‖

+n2
⊥

Xe
Y 2

e
[−VTe

cn2
‖
Z0 − VTe

cn‖
dZ0
dy0

c
n2
‖VTe

] = ∂ε11
∂n‖

−n2
⊥(δm

n‖
+ Xe

Y 2
e n3

‖

dZ0
dy0

)

(4.59)

∂ε33
∂Xe

= − 1
n2
‖

c2

V 2
Te

dZ0
dy0

= −Kzz
Xe

, ∂ε33
∂Xi

= 0
∂ε33
∂Ye

= 0, ∂ε33
∂Yi

= 0
∂ε33
∂Te

= −Xe
n2
‖
(− c2

V 2
TeTe

dZ0(y0)
dy0

− c2

V 2
Te

d2Z0
dy2

0

c
n‖VTe2Te

), ∂ε33
∂Ti

= 0
∂ε33
∂n⊥

= 0
∂ε33
∂n‖

= 2Xe
n3
‖

c2

V 2
Te

dZ0
dy0

+ Xec2

n2
‖V

2
Te

d2Z0
dy2

0

c
n2
‖VTe

(4.60)

∂ε23
∂Xe

= −in⊥δx
∂Kzz
∂Xe

= in⊥δx
c2

n2
‖V

2
Te

dZ0
dy0

= −in⊥δx
Kzz
Xe

, ∂ε23
∂Xi

= 0
∂ε23
∂Ye

= in⊥
δx
Ye

Kzz,
∂ε23
∂Yi

= 0
∂ε23
∂Te

= −in⊥(δx
1
Te

Kzz +δx
∂ε33
∂Te

), ∂ε23
∂Ti

= 0
∂ε23
∂n⊥

= −i(δxKzz +n⊥δx
∂ε33
∂n⊥

)
∂ε23
∂n‖

= −in⊥( δx
n‖

Kzz +δx
∂ε33
∂n‖

)

(4.61)
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∂ε21
∂Xσ

= −∂ε12
∂Xσ

∂ε21
∂Yσ

= −∂ε12
∂Yσ

∂ε21
∂Tσ

= −∂ε12
∂Tσ

∂ε21
∂n⊥

= −∂ε12
∂n⊥

∂ε21
∂n‖

= −∂ε12
∂n‖

(4.62)

∂ε31
∂Xσ

= ∂ε13
∂Xσ

∂ε31
∂Yσ

= ∂ε13
∂Yσ

∂ε31
∂Tσ

= ∂ε13
∂Tσ

∂ε31
∂n⊥

= ∂ε13
∂n⊥

∂ε31
∂n‖

= ∂ε13
∂n‖

(4.63)

∂ε32
∂Xσ

= −∂ε23
∂Xσ

∂ε32
∂Yσ

= −∂ε23
∂Yσ

∂ε32
∂Tσ

= −∂ε23
∂Tσ

∂ε32
∂n⊥

= −∂ε23
∂n⊥

∂ε32
∂n‖

= −∂ε23
∂n‖

(4.64)

The derivatives of the refractive index with respect to the space coordinates are

n‖ = (bznz +brnr +bφ
m
r

)/b

where,

nφ = m/r

n2 = n2
z +n2

r +(
m
r

)2

n⊥ =
√

n2 −n2
‖

b =
√

b2
z +b2

r +b2
φ

∂b
∂r

=
1
b
(br

∂br

∂r
+bz

∂bz

∂r
+bφ

∂bφ

∂r
)
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∂b
∂z

=
1
b
(br

∂br

∂z
+bz

∂bz

∂z
+bφ

∂bφ

∂z
)

∂b
∂φ

=
1
b
(br

∂br

∂φ
+bz

∂bz

∂φ
+bφ

∂bφ

∂φ
)

∂n
∂r

= −1
n
(

m2

r3 )

∂n
∂z

= 0

∂n
∂φ

= 0

∂n‖
∂r

=
1
b
(

∂bz

∂r
nz +

∂br

∂r
nr +

∂bφ

∂r
m
r
− ∂bφ

∂r
m
r2 )−

n‖
b

∂b
∂r

∂n‖
∂z

=
1
b
(

∂bz

∂z
nz +

∂br

∂z
nr +

∂bφ

∂z
m
r

)−
n‖
b

∂b
∂z

∂n‖
∂φ

=
1
b
(

∂bz

∂φ
nz +

∂br

∂φ
nr +

∂bφ

∂φ
m
r

)−
n‖
b

∂b
∂φ

∂n‖
∂nr

=
br

b

∂n‖
∂nz

=
bz

b

∂n‖
∂m

=
bφ

rb

∂n⊥
∂r

=
1

n⊥
(n

∂n
∂r

−n‖
∂n‖
∂r

) =
1

n⊥
(−m2

r3 −n‖
∂n‖
∂r

)

∂n⊥
∂z

=
1

n⊥
(n

∂n
∂z

−n‖
∂n‖
∂z

) = − 1
n⊥

(n‖
∂n‖
∂z

)

∂n⊥
∂φ

=
1

n⊥
(n

∂n
∂φ

−n‖
∂n‖
∂φ

) = − 1
n⊥

(n‖
∂n‖
∂φ

)
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∂n⊥
∂nr

=
1

n⊥
(nr −n‖

∂n‖
∂nr

)

∂n⊥
∂nz

=
1

n⊥
(nz −n‖

∂n‖
∂nz

)

∂n⊥
∂m

=
1

n⊥
(

m
r2 −n‖

∂n‖
∂m

)

The dielectric tensor element Kzzedepends on the derivative of the plasma dispersion
function dZ0(y0)/dy0.The real part of Z0 function has the maximal and the minimal
values at y0 equal to the critical value y0 = y0cr = ±0.924 . The right hand side of the
ray-tracing equations contains the first and the second derivatives from Z0(y0). These
derivatives change the signs near y0cr. This creates problems when the ray trajectory
goes through the points with y0 close to y0cr. To avoid this problem the code can change
the type of the dispersion relation from the Ono dispersion, id=8, to the cold plasma
dispersion relation, id=2, in the vicinity of y0cr. For the option iswitch=1 the code will
use cold plasma dispersion for | y0 −0.95∗ sign(y0) |< 0.03.

4.6 The dispersion relation for non-Hermitian dielec-
tric tensors.

We used the dispersion relation for non-Hermitian dielectric plasma proposed in [2].
This form of the dispersion function is realized for the Mazzucato electron relativistic
tensor id=5 and for the hot non-relativistic plasma id=9.
For the plasma with non-Hermitian dielectric tensors ε̂ 6= ε̂H the dispersion relation is

0 = D(
−→k ,ω,−→r , t) = det ε̂(−→k ,ω,−→r , t) = P(

−→k ,ω,−→r , t)+ iQ(
−→k ,ω,−→r , t) (4.65)

Here the function D has non-zero imaginary part. The equation 4.65 gives a couple of
the equations for the real functions

P(
−→k ,ω,−→r , t) = 0,Q(

−→k ,ω,−→r , t) = 0 (4.66)

In this case we have two equations for one function ω = ω(
−→k ,−→r , t) so this system has

not the solution. In [2] it was proposed to introduce the complex frequency Ω = ω+ iν
with small imaginary part ν � ω. In this case the condition, that the determinant of the
wave amplitude system should be equal zero, gives the equation

D(
−→k ,ω+ iν,−→r , t) = det ε̂(−→k ,ω+ iν,−→r , t) = 0 (4.67)

For small ν this equation can be approximately written as

D(
−→k ,ω,−→r , t)+ iDω(

−→k ,ω,−→r , t) ≈ 0 (4.68)
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Using the real and imaginary parts of D 4.65 in 4.68 we get

ν = P/Qω = −Q/Pω (4.69)

Let
Φ(

−→k ,ω,−→r , t) = P2(
−→k ,ω,−→r , t)+Q2(

−→k ,ω,−→r , t) (4.70)

From 4.69
Φω = 2PPω +QQω = 0 (4.71)

Equation 4.71 is the dispersion relation that determines ω = ω(
−→k ,−→r , t). This disper-

sion function 4.71 is used in the ray tracing equations.

4.7 Change in the dispersion function along the ray.
In some conditions the ray trajectory reaches a point where the dispersion function does
not permit the trajectory to go through this point. For example, this can occur for hot
plasma when the trajectory goes through the gyro-resonance area, where the dispersion
relation has points of bifurcation or conversion from X to EBW mode. In this case the
code can change the form of dispersion function used. The code changes:

a) the dispersion function used in ray-tracing equations ;
b) the formula for absorption calculations.

Away from the resonance point, the dispersion relation and absorption are specified by
parameters id and iabsorp given in the input genray.dat file. If iswitch=1, the code
changes these parameters to idswitch and iabswitch in the vicinity of the cyclotron-
resonance points |1− nY j| < dely, n = 0,±1,±2.... The type of plasma species j is
determined by parameter j =jy_d. Parameters iswitch, jy_d, del_y, idswitch and
iabswitch are given in genray.dat file. Parameter iy_d can be equal =1 for electrons
or jy_d=2.,...nbulk for ions.
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Wave power absorption

Wave power P along the ray trajectory can be found in the following formula:

P(l) = P(0)exp(−2
Z l

0
Im(

−→k )d
−→
l) (5.1)

Here −→l is the vector directed parallel the trajectory, l is the distance along the
ray, P(0) is the wave power at launch point. The integral is calculated along the ray
trajectory.

Im(
−→k ) ·d−→l =

(Im−→k ) ·−→V gr

Vgr
d−→l =

ω
c

Im−→N ·−→V gr

Vgr
d−→l =

ω
c

ImN⊥Vgr⊥
Vgrp

dlp. (5.2)

−→V gr is wave group velocity, Vgrp is the poloidal component of the group velocity, Vgr⊥ is
group velocity perpendicular to the magnetic field.

To calculate wave absorption we need to know the imaginary part of perpendicular
refractive index ImN⊥. GENRAY has several possibilities for calculation of ImN⊥.
For calculation ImN⊥, the code uses the anti-Hermitian parts of different forms of the
dielectric tensor. The switch iabsorp allows various choices.

5.1 Mazzucato approximation of the relativistic dielec-
tric tensor for electron plasma

(iabsorp=1)
In this case the code uses the Mazzucato solver[5] for determination ReN ⊥+iImN⊥

as a root of dispersion relation DMaz(N‖, ReN ⊥ +iImN⊥, Xe, Ye, Te) = 0.

5.2 Anti-Hermitian relativistic dielectric tensor for elec-
tron plasma

(iabsorp=6)

33
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5.2.1 The tensor formula.
In this case we use the numerical calculations of anti-Hermitian dielectric tensor ε̂a for
electron plasma with relativistic Maxwellian electrons (R.W.Harvey et al., 1993)[6],
using formulas given in (M.Bornatici et al., 1985) [?],

ε̂relativista = −π
ω2

p

ω2

n=∞

∑
n=−∞

Z

d3 pU (n)( f )Ŝ(n)δ(γ−
k‖v‖

ω
− nωce

ω
), (5.3)

where,

U (n)( f ) ≡ 1
γ

[
nωce

ω
∂ f

∂p⊥
+N‖

p⊥
mc

∂ f
∂p‖

]
, (5.4)

Ŝ(n) ≡




p⊥( nJn
b )2 −ip⊥

nJnJ
′
n

b p‖
nJ2

n
b

ip⊥
nJnJ

′
n

b p⊥(J
′
n)

2 ip‖JnJ
′
n

p‖
nJ2

n
b −ip‖JnJ

′
n

p2
‖

p⊥
J2

n


 . (5.5)

Here, ωce is rest mass electron cyclotron frequency, m is electron rest mass, p is mo-
mentum, u = p/m is momentum per unit mass, γ =

√
1+(p/mc)2 is the relativistic

factor, v = p/γm is velocity, symbols ‖ and ⊥ refer to direction with respect to ambient
magnetic field, and f (p⊥, p‖) is the relativistic electron distribution function normal-
ized to

R

d3 p f = 1. Bessel function Jn(b) and its derivatives J
′
n = dJn/db at argument

b = | k⊥p⊥
mωce

| measure the ratio of the electron Larmor radius and the perpendicular wave

length. Tensor Ŝ(n) is represented in a Cartesian coordinate system with the z-axis
along magnetic field −→B and y -axis in the −→k ×−→B -direction. Here n is the number of
the gyro-harmonic.

It is convenient to introduce normalized momentum p = p/mc, functionsU (n)
( f (p⊥, p‖)) =

mcU (n)( f (p⊥, p‖)) and Ŝ
(n)

(p⊥, p‖) =
p⊥Ŝ(n)(p⊥,p‖)

mc . For variable γ =
√

1+ p2, b =
N⊥p/|Y | (??sign of Y),

U (n)
( f (p⊥, p‖)) ≡

1
γ

[
nY

∂ f
∂p⊥

+N‖p⊥
∂ f
∂p‖

]
, (5.6)

Ŝ
(n)

≡




p2
⊥( nJn

b )2 −ip2
⊥

nJnJ
′
n

b p‖p⊥
nJ2

n
b

ip2
⊥

nJnJ
′
n

b p2
⊥(J

′
n)

2 ip‖p⊥JnJ
′
n

p‖p⊥
nJ2

n
b −ip‖p⊥JnJ

′
n p2

‖J2
n


 , (5.7)

ε̂relativista =−πX(mc)3
n=∞

∑
n=−∞

Z

d3 pU(n)
( f (p⊥, p‖))Ŝ

(n)
(p⊥, p‖)δ(γ−N‖p‖−nY)/p⊥.

(5.8)
The relativistic cyclotron resonance condition is:

γ−N‖p‖−nY = 0. (5.9)
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We calculate the anti-Hermitian part of the relativistic dielectric tensor for the normal-
ized relativistic electron distribution function f ,

R

d3 p f = 1. The dielectric tensor 5.3
for the normalized distribution function is

ε̂relativista = −πX
n=∞

∑
n=−∞

Î(n). (5.10)

Î(n) = (mc)3 R

d3 pU(n)
( f )Ŝ

(n)
δ(γ−N‖p‖−nY)/p⊥ =

= 2π(mc)3 R

dp⊥dp‖U
(n)

( f )Ŝ
(n)

δ(γ−N‖p‖−nY) =

= 2π
R

dp⊥dp‖U
(n)

( f )Ŝ
(n)

δ(γ−N‖p‖−nY).

(5.11)

Here delta function δ(g(n)) in 5.11 has the argument:

g(n)(p⊥, p‖) = γ−N‖p‖−nY. (5.12)

The derivative from the g(n) by p‖ is:

∂g(n)

∂p‖
=

p‖−N‖γ
γ

. (5.13)

Here we introduce the tensor:

F̂(n)(p⊥, p‖) = 2πU(n)
( f (p⊥, p‖))Ŝ

(n)
(p⊥, p‖). (5.14)

The expression 5.11 can be rewritten using 5.12, 5.13 and 5.14:

Î(n) =
R

F̂(n)(p⊥, p‖)dp⊥dp‖δ(g(n)(p⊥, p‖)) =

=
R

p(n)
⊥0

0 dp⊥ ∑k=1,2
F̂(n)(p⊥,p(n)

‖k
(p⊥))

| ∂
∂p‖

g(n)(p⊥,p(n)
‖k

(p⊥))|.
(5.15)

Here, p‖k
(p⊥) are the roots of resonance condition 5.9. For different cyclotron reso-

nance conditions, the sum over index k has one or two terms, and the upper integral

limit p(n)
⊥0

can be finite p(n)
⊥0

=
N2
‖+n2Y 2−1

1−N2
‖

or infinite p(n)
⊥0

= ∞ number. We introduce the

tensor:

Ĝ(n)
k (p⊥) =

F̂(n)(p⊥, p(n)
‖k

(p⊥))

| ∂
∂p‖

g(p⊥, p(n)
‖k

(p⊥))|.
(5.16)

The final formula for ε̂a is:

ε̂ = −πX
n=∞

∑
n=−∞

Î(n), (5.17)

Î(n) =

Z p⊥0

0
dp⊥ ∑

k=1,2
Ĝ(n)

k (p⊥), (5.18)
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Ĝ(n)
k (p⊥) =

2πU(n)
( f (p⊥, p‖))

| ∂
∂p‖

g(p⊥, p(n)
‖k

(p⊥))|
Ŝ

(n)
(p⊥, p(n)

‖k
), (5.19)

γ(n)
k (p⊥) =

√
1+(p⊥)2 +(p(n)

‖k
(p⊥))2. (5.20)

We calculate anti-Hermitian relativistic tensor ε̂relativista numerically on the p⊥ mesh.
For iabsorp=6, GENRAY calculates the imaginary part ImN⊥ using the Hermitian

part of dielectric tensor 4.13 for the hot non-relativistic plasma and the anti-Hermitian
dielectric tensor 5.3

ImN⊥ =
ImD(N‖,ReN⊥,ε̂hotH + îεrelativista)

∂
∂Re(N⊥)D(N‖,ReN⊥,ε̂hotH )

. (5.21)

Here, ε̂hotH = 0.5(ε̂hot + ε̂T?
hot) is the Hermitian part of the hot non-relativistic dielectric

tensor.

5.2.2 Cyclotron resonance curves
The cyclotron resonance condition 5.9 gives resonance curves at (p⊥, p‖) plate. The
resonance curve can be an ellipse, parabola or hyperbola . The resonance curve is the
solution of the equation:

γ = N‖p‖ +nY. (5.22)

This equation gives the following conditions:

N‖p‖ +nY > 1 > 0, (5.23)

p2
⊥(1−N2

‖ )−2N‖p‖nY + p2
⊥ = n2Y 2 −1. (5.24)

For N2
‖ 6= 1, the resonance curve 5.24 can be rewritten in the following form:

A2sign(1−N2
‖)(p‖−

N‖nY

1−N2
‖
)2 + p2

⊥ = R2sign(
n2Y 2 +N2

‖ −1

1−N2
‖

), (5.25)

where

R2 = |
n2Y 2 +N2

‖ −1

1−N2
‖

|, (5.26)

A2 = |1−N2
‖ |. (5.27)

If N2
‖ < 1, the resonance curve 5.25 is an ellipse:
If n2Y 2 +N2

‖ −1 > 0 , equation 5.25 has no solution.
If n2Y 2 +N2

‖ −1 ≥ 0 , the ellipse resonance curve is:

(p‖−
N‖nY

1−N2
‖
)2

(R
A )2

+
p2
⊥

R2 = 1. (5.28)
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The two roots of equation 5.28 are:

p(n)
‖1,2

(p⊥) =
N‖nY ±

√
N2
‖ +n2Y 2 −1+(N2

‖ −1)p2
⊥

1−N2
‖

. (5.29)

These two roots exist for the following p⊥values:

0 ≤ p⊥ ≤ p(n)
⊥0

=

√√√√n2Y 2 +N2
parallel −1

1−N2
‖

. (5.30)

If N2
‖ > 1, the resonance curve 5.25 is a hyperbola:

(p‖−
N‖nY

1−N2
‖
)2

(R
A )2

− p2
⊥

R2 = 1. (5.31)

This equation has only one root which obeys condition 5.23.
If N‖ > 1, the root of equation 5.31 is:

p(n)
‖2

(p⊥) =
N‖nY −

√
N2
‖ +n2Y 2 −1+(N2

‖ −1)p2
⊥

1−N2
‖

, (5.32)

0 ≤ p⊥ < ∞, (5.33)

p(n)
‖2

(p⊥) > p(n)
‖2

(p⊥ = 0) =
N‖nY −

√
N2
‖ +n2Y 2 −1

1−N2
‖

. (5.34)

If N‖ < −1, the root of equation 5.31 is:

p(n)
‖1

(p⊥) =
N‖nY +

√
N2
‖ +n2Y 2 −1+(N2

‖ −1)p2
⊥

1−N2
‖

, (5.35)

0 ≤ p⊥ < ∞, (5.36)

p(n)
‖1

(p⊥) < p(n)
‖1

(p⊥ = 0) =
N‖nY +

√
N2
‖ +n2Y 2 −1

1−N2
‖

. (5.37)

For N2
‖ = 1, the resonance curve 5.24 is transformed to a parabola:

2N‖p‖nY = p2
⊥−n2Y 2 +1. (5.38)

If nY ≤ 0, equation 5.40 with condition 5.23 has no solution. .
If nY > 0, equation 5.40 with condition 5.23 has one root.

p(n)
‖1

(p⊥) =
1

2nYN‖
(p2

⊥−n2Y 2 +1), (5.39)
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0 ≤ p⊥ < ∞. (5.40)

For N‖ = 1,

p(n)
‖1

(p⊥) ≥ p(n)
‖1

(p⊥ = 0) =
1

2nYN‖
(−n2Y 2 +1). (5.41)

For N‖ = −1,

p(n)
‖1

(p⊥) ≤ p(n)
‖1

(p⊥ = 0) =
1

2nYN‖
(−n2Y 2 +1). (5.42)

5.2.3 The distribution functions.
GENRAY has the several possibilities to choose the form of the relativistic electron
distribution function. The option i_diskf (set in genray.dat file) determines the form of
the used distribution.

Analytical relativistic Maxwellian distribution (i_diskf=0). In this case the code
uses the analytical relativistic Maxwellian distribution with the radial electron temper-
ature profile.

fm =
1

4πm2cT K2(θ)
exp(−θγ) =

1
(mc)3 f m(θ,γ), (5.43)

f m(θ,γ) =
θ

4πK2(θ)
exp(−θγ) =

θ
4πK2(θ)exp(θ)

exp(θ(1− γ)) (5.44)

This function f m is normalized
R

d3 p f m = 1. Here, T (ρ) is the electron temperature,
θ = mc2

T , K2 is the Macdonald function. For the Maxwellian distribution 5.44, function
5.6 has the form:

U(n)
( f m(p⊥, p‖)) = − p⊥θ f m

γ2 (nY +N‖p‖). (5.45)

Relativistic distribution specified on a mesh, from diskf file written by CQL3D
(i_diskf=1). In this case GENRAY reads the mesh 3D distribution from the ASCII
file diskf and creates the function that approximates this mesh distribution.

Relativistic distribution specified on a mesh, from netcdfnm.nc file written by
CQL3D (i_diskf=2). In this case GENRAY reads the mesh 3D distribution from
netcdf file netcdfnm.nc and creates the function that approximates this mesh distribu-
tion.
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Model analytic relativistic non-Maxwellian distribution (i_diskf=3). In this case
GENRAY creates the model distribution, using the input variables from namelist /read_diskf/
in genray.dat file.

f (v,χ,ρ) = n(ρ)(1−rtail−rhot−rbeam) fm(T (ρ))+rtail∗ ftail +rhot ∗ fhot +rbeam∗ fbeam
(5.46)

Where n(ρ) is the electron density radial profile, fm is the normalized Maxwellian
relativistic electron distribution with the electron temperature radial profile,

R

fmd3v =
1, ftail is the tail distribution, fbeam is the distribution created by beam, fhot is the tail
distribution , rtail, rhot and rbeam are the ratios of the tail, hot and beam densities to
the total plasma density.
The tail distribution

ftail = ctailH(ρ,rt1,rt2)∗ fm(ttail) (5.47)

Where H(x,x1,x2) is the box function

H(x,x1,x2) =

{
1,x ⊂ (x1,x2)
0,x /∈ (x1,x2)

(5.48)

rt1 and rt2 are the normalized small radii for tail localization, fm(ttail) is the relativis-
tic Maxwellian distribution, ttail is the tail temperature.
The beam distribution

fbeam = cbeamH(ρ, rb1, rb2)∗ exp(− mc2

2∗ tbeam

(p‖− pbeam‖)
2 +(p⊥− pbeam⊥)2

(mc)2 )

(5.49)

pbeam = m
√

ebeam

m
(5.50)

pbeam‖ = pbeam cosθbeam, pbeam⊥ = pbeam sinθbeam (5.51)

Where rb1 and rb2 are the small radii for beam localization, tbeam is the beam com-
ponent temperature,θbeam=thbeam (degree) is the beam pitch angle.
The hot function approximates the distribution created by the quasi-linear RF heating

fhot = chotH(ρ, rh1, rh2)H(epar, hotmnpar, hotmxnpar)H(epar, hotmnper, hotmxnpar)

( p⊥
mc )hotexp exp(− 1

2 ( mc2

thot par

(
p‖
mc

)2
+ mc2

thot per

( p⊥
mc

)2
))

(5.52)
Where rh1 and rh2 are the small radii for the hot component localization, thotpar
and thotper are the parallel and perpendicular temperatures of the hot component,

epar = (

√
1+

v2
‖

c2 −1)mc2, eper = (

√
1+

v2
⊥

c2 −1)mc2 are the parallel and perpendicu-
lar energies, (hotmnpar,hotmxnpar) and (hotmnper,hotmxnper) are the boundaries
of the parallel and perpendicular energy boxes hotmnpar< epar <hotmxnpar, hotm-
nper< eper <hotmxnper.
The tail, beam and hot distributions are normalized to unity

R

ftaild3v = 1,
R

fbeamd3v =
1,

R

fhot d3v = 1.
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5.3 Anti-Hermitian dielectric tensor for hot non-relativistic
electron-ion plasma

(iabsorp=4)
For iabsorp=4 , GENRAY calculates the imaginary part ImN⊥ using the dielectric

tensor 4.13 for hot non-relativistic plasma.

ImN⊥ =
ImD(N‖,ReN⊥,ε̂hot)
∂

∂Re(N⊥)D(N‖,ReN⊥,ε̂hotH )
. (5.53)

Here ε̂hotH = 0.5(ε̂hot + ε̂T?
hot) is the Hermitian part of the hot non-relativistic dielectric

tensor.

5.4 Fast wave absorption
iabsorp=3

For fast waves, the code can calculate the imaginary part on the perpendicular com-
ponent of the refractive index ImN⊥using results from (S. C. Chiu et al., 1989)[8]. The
code calculates electron and ion absorption separately ImN⊥ = ImN⊥e + ImN⊥i .

5.5 Lower hybrid wave absorption
iabsorp=2

For lower hybrid waves, the code can calculate the imaginary part of the perpendic-
ular component of the refractive index ImN⊥using the results from (P. Bonoli, 1984)
[9]. The code calculates the electron ImN⊥e , ion ImN⊥i , and collisional ImN⊥cl absorp-
tion separately giving total absorption ImN⊥ = ImN⊥ + ImN⊥i + ImN⊥cl .



Chapter 6

Stochastic wave scattering

The code has the capability of switching on the stochastic scattering of perpendicular
refractive index N⊥. For example, this can be used for modeling the scattering of
low hybrid waves by drift-wave density fluctuations (P.L. Anderson and F.W.Perkins,
1983) [10]. We use angle scattering of refractive vector −→N ⊥in the plate perpendicular
to the magnetic field −→B in small radius points ρsc along the ray trajectories. If the ray
trajectory passes this radius or the ray is reflected from the plasma boundary, then polar
angle ϑ will be scattered with the deviation

√
2σsc(ρsc)

4ϑ =
√

2σscζ. (6.1)

Where :
ϑ is a polar angle in the plate perpendicular to the magnetic field ;
ζ(0,1) is the random number with normal distribution M(ζ) = 0, M(ζ2) = 1;
σsc(ρ) is the given angle dispersion.
The input parameters for −→N ⊥angle scattering are:
iscat is the switch of the scattering:
iscat=1 to switch on the scattering, =0 to switch out;
nscat_n is the number of the small radius points at which the code will scatter −→N ⊥;
this parameter is given in param.i file;
scatd(0) is the mean square scattering angle (radian2) for the reflection near
the plasma boundary;
rhoscat(1:nscat_n) are the small radii for the scattering location;
scatd(i)=σsc(rhoscat(i)), i=1,...,nscat_n are the mean square scattering angles (radian2)

at the small radii.
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Chapter 7

Wave launch and reflection

The code has several possibilities for ray launch. It can launch a ray from a vacuum
point outside the plasma or from an interior point inside the plasma. The switch istart
chooses the launch method.

7.1 Ray cone
istart=1

The cone pencil of rays launched in the vacuum outside the plasma is a model of
the ECR launch. In this case the rays are launched on a set of circular cones with the
same cone vertex. All cone axes coincide with one central ray.

The input parameters for the cone are in genray.dat file:
1) (rst,phist,zst) are coordinates (r,ϕ,z) of the cone vertex. Here, lengths rst, phist

are in (m), the toroidal angle phist is in degrees.
2) The direction of the central ray, going from the cone vertex, is given by two

angles (in degrees):
alfast is toroidal angle α of the central ray , measured counter clockwise around z

axis;
betast is poloidal angle β of the central ray, β is the angle between the central ray

and the plate z = const.
The refractive unit index −→N of the central ray has the coordinates :
Nr = sin(π/2−β)cosα, Nϕ = sin(π/2−β)sinα, Nz = cos(π/2−β)
3)The specifications of the cones are:
alpha1 is angle width of the power distribution (the maximum cone angle) mea-

sured from the central ray;
na1 is number of cones (if na1=0, the wave cone consists from the central ray

only);
na2 is number of rays per cone;
alpha2 is cone angle;
total number of rays irays=na1*na2+1.
4) Power distribution among rays:

42
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The total power from antenna is powtot (MWt). The power distribution over cone
angle α has the following form:

P(α) = P0 exp(−2(
α
α

)2). (7.1)

Distribution 7.1 is normalized on the total antenna power:

Z α=al pha1

α=0
P(α)sinαdα = powtot. (7.2)

For the cone pencil, the code calculates the coordinates of the intersection of each
ray cone i = 1, .., irays with the plasma boundary (R0i.ϕ0i,z0i). At the points of inter-
section (R0.ϕ0,z0), the code calculates the toroidal Nϕ and poloidal Nθ components of
the refractive vector.

Nϕ = −Nx sinϕ0 +Ny cosϕ0, (7.3)

Nθ = (−∂ψ
∂z

(Nx cosϕ0 +Ny sinϕ0)+
∂ψ
∂r

sinϕ0)/|∇ψ|. (7.4)

Here , the derivatives from the poloidal flux ψ are taken at the point of intersection
(R0.ϕ0,z0).

7.2 Approximation of grill antenna launch.
istart=2

The rays are launched from points interior to the plasma, since the wave mode may
be evanescent in the immediate vicinity of the low density plasma edge. The spectral
distribution of the rays is specified parametrically. The parameters of the grill are given
in genray.dat file.

7.2.1 Location on the grill.
Location on the grill is determined by the following parameters:

ngrilla ( in param.i file) is the maximal total number of N‖ spectra used for setting
of the arrays,

ngrill (≤ngrilla, given in genray.dat file) is the total number of N‖ spectra to be
used; i = 1, ...,ngrill are the given N‖ spectra. The different spectra can have the same
or different poloidal locations.

rhopsi0(ngrill) is the initial small radius ρi for the front wave of each grill spec-
trum;

thgrill(ngrill) is poloidal angle θi (degrees) of each grill measured counter clock-
wise from the horizontal through the magnetic axis;

phigrill(ngrill) is toroidal angle ϕi (degrees) of each grill;
height(ngrill) is poloidal length hi (m) of each grill (giving the poloidal power

distribution of each grill);
nthin(ngrill) is the number of rays simulating a grill.

The space power distribution is determined by the following variables
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powers(ngrill) is power in one grill (MWatts). The total power is powetot=∑ngrill
i=1 powers(i).

The form of the grill spectrum is determined by the following parameters:
The code has the several types of the refractive index setting. The variable i_n_poloidal
chooses the type (see latter).
For i_n_poloidal=1,2,3 cases:

anmin(ngrill) is position of left bound N‖minof the power spectrum P(N‖); it can
be negative;

anmax(ngrill) is position of right bound N‖maxof the power spectrum P(N‖); it can
be negative;

nnkpar(ngrill) is number of points of power spectrum P(N‖);
For i_n_poloidal=4 case:

antormin(ngrill) is position of left bound Nφminof the power spectrum P(Nφ,Nθ);
it can be negative;

antormax(ngrill) is position of right bound Nφmax of the power spectrum P(Nφ,Nθ);
it can be negative;

nnktor(ngrill) is number of points of power spectrum P(Nφ,Nθ) in Nφ direction;
anpolmin(ngrill) is position of left bound Nθminof the power spectrum P(Nφ,Nθ) it

can be negative;
anpolmax(ngrill) is position of right bound Nθmaxof the power spectrum P(Nθ,Nθ)

it can be negative;
nnkpol(ngrill) is number of points of power spectrum P(Nφ,Nθ) in Nθ direction;

7.2.2 Power distribution along one grill.
Poloidal angle θ along a grill with the number i is in interval (θimin ,θimax). Where
θimin = θi +0.54θi, θimax = θi −0.54θi and

4θi = 2arctan(0.5hi/ρi) ≈ hi/ρi. (7.5)

We use the following power Pθi(θ) distribution along one i grill

Pθi(θ) = pθi cos2(π(θ−θi)/4θi). (7.6)

This distribution Pθi(θ) is normalized on powers(i)

1
4θi

Z θimax

θimin

Pθi(θ)dθ = powers(i). (7.7)

For each i grill we introduce poloidal mesh

θi j = θi −0.54θi +( j−1)4θi/(nthin(i)−1)), j = 1, ...,nthin(i). (7.8)

The codes has several possibilities to set the initial refractive index. The index i_n_poloidal=1,2,3,4
(see latter) chooses the type of the refractive index setting.
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7.2.3 Power spectrum.
Power spectrum over parallel refractive index.

For the cases i_n_poloidal=1,2,3 one of the input variables is the parallel refractive
index N‖. Hear we describe the used forms of the power spectrum over the parallel
refractive index PN(N‖). For one i grill, the parallel component of refractive vector N‖
is in the interval (N‖imin

, N‖imax
), where N‖imin

= anmin(i), N‖imax
= anmax(i). We use

two different forms of power spectrum:
if igrillpw=1

PNi(N‖) = pNi. (7.9)

if igrillpw=2

PNi(N‖) = pNi

(
sin(x)

x

)2

, x =
2π

4N‖i

(N‖−N‖0i
). (7.10)

Here, 4N‖i = N‖imax
−N‖imin

, N‖0i
= 0.5(N‖imax

+N‖imin
) is the center value of N‖. The

power spectrum 7.9 and 7.10 are normalized at unit

1
4N‖i

Z N‖=N‖imax

N‖=N‖imin

PNi(N‖)dN‖ = 1. (7.11)

For each i grill we introduce uniform N‖ mesh:

N‖i,n = anmin(i)+nhN‖i
, n = 1, ...,nnkpar(i) (7.12)

Where hN‖i
= (anmax(i)−anmin(i))/(nnkpar(i)+1) is the step of this mesh.

if igrillpw=3

PNi(N‖) = pNiexp((
N‖−anmin(i)

anmax(i)
)2). (7.13)

This power spectrum is normalized by unit using eq.7.11.

Power spectrum over toroidal and poloidal refractive indexes.
For the cases i_n_poloidal=4 the refractive index −→N is set by its toroidal and poloidal

components Nφ, Nθ. Hear we describe the used forms of the power spectrum over
the toroidal and poloidal refractive index components PN(Nφ,Nθ). For one i grill, the
toroidal and poloidal refractive vector components are in the intervals Nφ ⊂ (Nφimin

, Nφimax
)

,Nθ ⊂ (Nθimin
, Nθimax

), where Nφimin
= antormin(i), Nφimax

= antormax(i) and Nθimin
=

anpolmin(i), Nθimax
= anpolmax(i). We use two different forms of power spectrum:

if igrillpw=1
PNi(Nφ,Nθ) = pNi. (7.14)

if igrillpw=2
PNi(Nφ,Nθ) = pNi fφ

(
Nφ

)
fθ

(
Nθφ

)
(7.15)

fφ(Nφ) =

(
sin(x)

x

)2

, x =
2π

4Nφi

(Nφ −Nφ0i
) (7.16)
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fθ(Nθ) =

(
sin(y)

y

)2

, y =
2π

4Nθi

(Nθ −Nθ0i
) (7.17)

Here 4Nφi = Nφimax
−Nφimin

and 4Nθi = Nθimax
−Nθimin

, Nφ0i
= 0.5(Nφimax

+Nφimin
) and

Nθ0i
= 0.5(Nθimax

+ Nθimin
) are the center values of Nφ and Nθ . The power spectrum

7.14, 7.15, 7.16 and 7.17 are normalized at unit

1
4Nφi4Nθi

Z Nφimax

Nφimin

Z Nθimax

Nθimin

PNi(Nφ,Nθ)dNφdNθ = 1. (7.18)

For each i grill we introduce uniform (Nφ,Nθ) mesh:

Nφi,ntor = antormin(i)+ntor ∗hNφi
, ntor = 1, ...,nnktor(i) (7.19)

Nθi,npol = anpolmin(i)+npol∗hNθi
, npol = 1, ...,nnkpol(i) (7.20)

Where hNφi
= (antormax(i)−antormin(i))/(nnktor(i)+1)and hNθi

= (anpolmax(i)−
anpolmin(i))/(nnkpol(i)+1) are the steps of this mesh.

if igrillpw=3

PNi(Nφ,Nθ) = pNiexp(−(
Nφ −antormin(i)

antormax(i)
)2 − (

Nθ −anpolmin(i)
anpolmax(i)

)2) (7.21)

This power spectrum is normalized by unit using eq. 7.18.

7.2.4 Approximation of one i grill
Each i grill is divided into nthin(i) cells with poloidal length equal to δli j = ρi4θi/(nthin(i)−
1)). The centers of j cells are at points with coordinates (ρi,θi j ,ϕi) where θi j is given
by 7.8. The local power in j cell is:

Pθi j = pθi cos2(π(θi j −θi)/4θi)). (7.22)

Amplitude pθi is calculated from normalization condition 7.7. For nthin(i)=1 , we use
θi1 = θi , Pi1 = powers(i) .

For i_n_poloidal=1,2,3 cases. From all cell centers, we launch nnkpar(i) rays .
The ray with number n = 1, ...,nnkpar(i) has parallel refractive index N‖in7.12 and
spectrum power PNi(N‖i,n) from 7.9 or 7.10. For nnkpar(i)=1, we use N‖i,1 = N‖0i

=

0.5(anmax(i)+anmin(i)) and PNi(N‖i1) = powers(i). The partial power in the ray with
indexes (i, j,n) is Pi jn = Pθi(θi j)PNi(N‖in).

The number of rays per i grill is equal to nthin(i)*nnkpar(i) . The total number of
rays is iray = ∑i=ngrill

i=1
nthin(i)nnkpar(i).

So, in each space (i, j) point, the code calculates coordinates (R0.ϕ0,z0) of the
initial ray location. At this point for each (i, j,n) ray, the code determines parallel to
magnetic field component of the refractive index N‖i,n
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For i_n_poloidal=4 case. From all cell centers, we launch nnktor(i)*nnkpol(i)
rays . The ray with numbers ntor = 1, ...,nnktor(i) and npol = 1, ...,nnkpol(i) has
the toroidal and poloidal refractive index components (Nφi,ntor ,Nθi,npol ) 7.19, 7.20 and
spectrum power PNi(Nφi,ntor Nθi,npol ) from 7.14 or 7.15. For nnktor(i)=1, we use Nφi,1 =
Nφ0i

= 0.5(antormax(i)+antormin(i)), for nnkpol(i)=1, we use Nθi,1 = Nθ0i
= 0.5(anpolmax(i)+

anpolmin(i)). If the spectrum consists from one point nnktor(i)=1 and nnkpol(i)=1
then PNi(Nφi,1 ,Nθi,1) = powers(i). The partial power in the ray with indexes (i, j,ntor,npol)
is Pi, j,ntor,npol = Pθi(θi j)PNi(Nφi,ntor ,Nθi,npol ).

The number of rays per i grill is equal to nthin(i)*nnktor(i) *nnkpol(i). The total
number of rays is iray = ∑i=ngrill

i=1
ntin(i)nnktor(i)nnrpol(i).

So, in each space (i, j) point, the code calculates coordinates (R0.ϕ0,z0) of the
initial ray location. At this point for each (i, j,ntor,npol) ray, the code determines the
toroidal and poloidal refractive index components Nφi,ntor and Nθi,npol

There are the several possibilities to set the direction of the perpendicular refractive
index component in the code.

7.2.5 The given N_parallel determines N_toroidal and N_poloidal.
i_n_poloidal=1.
Using the given value of N‖i,n the code calculates the toroidal N‖ϕ and poloidal N‖θ com-
ponents of the refractive vector. Then it solves the dispersion relation N⊥ = N⊥(N ‖) or
N = N(N ‖). After that the code directs the perpendicular component of the refractive
index along the perpendicular to the magnetic surface along ±∇ψ.

Nρ = σ
√

N2 −N2
‖ = σ

√
N2 −N2

‖φ −N2
‖θ (7.23)

Here σ = ±1. Here σ = ±1. The variable σ=i_ vgr_ini is set in genray.dat file in
namelist /wave/. To choose the different possibilities of the grill type wave launch the
code has the switch i_n_poloidal that is determined in genray.dat file in grill namelist.
For the given case i_n_poloidal=1. By default i_n_poloidal=1.

7.2.6 The given N_parallel and N_poloidal.
i_n_poloidal=2.
The other possibility of the direction of the perpendicular refractive index is to set
parallel N‖i,n and poloidal Nθ refractive indexes i_n_poloidal=2 In the given case the
grill namelist has the input variable Nθ=n_poloidal. By default n_poloidal=0.

The initial refractive vector can be written as

−→N i,n = N‖i,n

−→B
B

+N⊥−→e ⊥ (7.24)

Here −→e ⊥ is a unit vector that determines the direction of the perpendicular refractive
index

−→e ⊥ = α⊥φ
−→e φ +α⊥θ

−→e θ +α⊥ρ
−→e ψ (7.25)
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The coordinates of −→e ⊥vector can be determined from the following equations

α2
⊥φ +α2

⊥θ +α2
⊥ρ = 1 (7.26)

Bφα⊥φ +Bpα⊥θ = 0 (7.27)

From 7.26, 7.27
α⊥φ = −Bpα⊥θ/Bφ (7.28)

α2
⊥ρ = 1−α2

⊥φ−α2
⊥θ = 1−α2

⊥θ
B2

B2
φ

(7.29)

The eq.7.29 have sense at

|α⊥θ| <
Bφ

B
(7.30)

Using 7.28, 7.29 we can rewrite 7.25

−→e ⊥ = −Bpα⊥θ/Bφ−→e φ +α⊥θ
−→e θ +σ

√
1−α2

⊥θ
B2

B2
φ

−→e ψ (7.31)

Here σ = ±1. From 7.24 and 7.31

−→N i,n = N‖i,n(
−→e φ

Bφ
B +−→e θ

Bp
B )+N⊥(−Bpα⊥θ/Bφ−→e φ +α⊥θ

−→e θ +σ
√

1−α2
⊥θ

B2

B2
φ

−→e ψ) =

= −→e φ(N‖i,n

Bφ
B −N⊥Bpα⊥θ/Bφ)+−→e θ(N‖i,n

Bp
B +N⊥α⊥θ)+−→e ψσ

√
1−α2

⊥θ
B2

B2
φ

(7.32)
Eq.7.32 gives the poloidal component of the initial refractive index Nθ = N‖

Bp
B +

N⊥α⊥θ . Here the poloidal refractive index Nθ is the part of the projection of the
refractive index on the. So

α⊥θ =
Nθ
N⊥

−
N‖
N⊥

Bp

B
(7.33)

Using the condition 7.30 we can get the condition for Nθ

N‖Bp

B
− N⊥Bφ

B
< Nθ <

N‖Bp

B
+

N⊥Bφ

B
(7.34)

7.2.7 The given N_parallel and the angle between N_perpendicular
and ∇ψ.

The other possibility of the direction of the perpendicular refractive index is to set
the parallel refractive index N‖i,n and the angle χ between the perpendicular refractive

index −→N ⊥and the gradient from the poloidal flux χ̂ = ̂−→N ⊥∇ψ , 0 ≤ χ ≤ π. For the
given case i_n_poloidal=3. In this given case the grill namelist has the input parameter
ksi_nperp. By default ksi_nperp=0.
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The initial refractive vector is determined be the equations 7.24, 7.25, 7.26 and
7.28. Where

α⊥ρ = cosχ (7.35)

Using 7.35 in 7.26,7.28 we will get

α⊥θ = sinχ
Bφ

B
(7.36)

α⊥φ = −sinχ
Bp

B
(7.37)

Using 7.36, 7.37 we can rewrite 7.25

−→e ⊥ = −Bp

B
sinχ−→e φ +

Bφ

B
sinχ−→e θ + cosχ−→e ψ (7.38)

It gives

−→N i,n = N‖i,n(
−→e φ

Bφ
B +−→e θ

Bp
B )+N⊥(−Bp

B sinχ−→e φ +
Bφ
B sinχ−→e θ + cosχ−→e ψ) =

= −→e φ(N‖i,n

Bφ
B −N⊥

Bp
B sinχ)+−→e θ(N‖i,n

Bp
B +N⊥

Bφ
B sinχ)+−→e ψN⊥ cosχ

(7.39)

7.2.8 The given toroidal and poloidal refractive index components.
i_n_poloidal=4. The other possibility to set the refractive index is to give its toroidal
and poloidal components Nφ and Nφ. In this case the refractive index is

−→N = Nφ−→e φ +Nθ
−→e θ +Nρ−→e ψ (7.40)

We will find the parallel refractive index for the given case. The vector of the parallel
refractive index component is

−→N ‖ = N‖(−→e φ
Bφ

B
+−→e θ

Bθ
B

) (7.41)

The vector of the perpendicular refractive index is

−→N ⊥ = N⊥ sinχ(−→e φ sinξ+−→e θ cosξ)+N⊥ cosχ−→e ψ (7.42)

Here χ is the angle between the perpendicular refractive index −→N ⊥and the poloidal

flux gradient χ̂ = ̂−→N ⊥∇ψ , 0 ≤ χ ≤ π, ξ is the angle between the projection of the
perpendicular refractive index on the plane perpendicular the ∇ψ and the poloidal unit
vector−→e θ. Using the condition 0 =

−→N ⊥ ·−→N ‖ = sinξ Bφ
B +cosξ Bθ

B we have tanξ =−Bθ
Bφ

,

so sinξ = ±Bθ
B and cosξ = ∓Bφ

B . The equation 7.42 will give

−→N ⊥ = ±N⊥ sinχ(−→e φ
Bθ
B

−−→e θ
Bφ

B
)+N⊥ cosχ−→e ψ (7.43)



CHAPTER 7. WAVE LAUNCH AND REFLECTION 50

Using 7.40, 7.41 and 7.43 we will have

Nρ = N⊥ cosχ (7.44)

Nφ = ±N⊥ sinχ
Bθ
B

+N‖
Bφ

B
(7.45)

Nθ = ∓N⊥ sinχ
Bφ

B
+N‖

Bθ
B

(7.46)

Equations 7.45 and 7.46 determine the parallel refractive index

N‖ = Nφ
Bφ

B
+Nθ

Bθ
B

(7.47)

and
sinχ = ±NφBθ −NθBφ

BN⊥
(7.48)

From the condition |sinχ| ≤ 1 equation 7.48 gives the condition for Nφ and Nθ. Equa-
tions 7.44, 7.48 determine the small radial refractive index component

Nρ = σ
√

1− sin2χ (7.49)

Here σ = ±1. The variable σ=i_ vgr_ini is set in genray.dat file in namelist /wave/.

7.2.9 The determination of cutoff LH and FW point near the plasma
edge.

In some cases it is necessary to launch LH or FW in the cutoff point most close to the
plasma edge. GENRAY has the possibility to shift the given launch point to the cutoff
point near the plasma edge. If the variable i_rho_cutoff=1 (in GENRAY.dat file) then
the the code will find the cutoff point. By default i_rho_cutoff=0.
From the input grill data the code determines the launch point (R0.ϕ0,z0).The code can
shift this point to the cutoff point near the plasma edge along the straight line. This line
is directed from the magnetic axis to the given point (R0.ϕ0,z0).

7.3 EC wave launch for O-X-B mode conversion sce-
narios

istart=3
For dense plasma with Xe(ρ = 0) > 1 3.1, the electron cyclotron O (ordinary) mode

launched from the periphery where Xe(ρ) < 1, reflects at the points where Xe = 1.
In this case O mode cannot reach the center of the plasma. A way to overcome the
density limit is the O-X-EBW mode conversion processes proposed by (J. Preinhaelter
and V.Kopecky, 1973) [11]. X and EBW refer to the extraordinary and the electron
Bernstein modes. These authors proposed the scenario that O mode be transformed to
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X mode at the point where Xe = 1. The O-X mode conversion requires the launch of O
mode with optimal parallel refractive index:

N‖opt =
√

Ye(Pconv)/Ye(Pconv)+1. (7.50)

Here,
Pconv = (ρconv,θconv) is O-X mode conversion point, where

Xe(ρconv,θconv) = 1; (7.51)

(ρconv,θconv) are the small radius and the poloidal angle of O-X mode conversion point
Pconv.

O-mode is transformed to X mode near O-X conversion point Pconv. The X-mode
enters the plasma with greater density, Xe > 1. Then X-mode is reflected and goes
towards the plasma periphery. If the upper hybrid resonance (UHR) layer (where Xe +
Y 2

e = 1) is inside the plasma , the X-mode is transformed into the electrostatic electron
Bernstein mode. The EBW mode is reflected near the UHR layer and can propagate
into the plasma core. The EBW mode is then absorbed by the plasma near the electron
cyclotron resonance (ECR) point. This scenario enables a wave launched in the O-
mode to heat the central part of an over-dense (Xe > 1) plasma.

This special X-mode launch has been implemented for studying O-X-EBW mode
conversion scenarios (C.B. Forest et al., 2000) [12]. The X-mode is launched from a
space point inside the plasma. To specify the location of this point we use input data
from the grill namelist parameters, θconv=thgrill(1).

First, we calculate the small radius ρconv of O-X conversion point Pconv for the
given poloidal angle θconv using equation 7.51. In the point found, the X-mode wave
is launched just inside the Xe = 1-layer in the direction of denser plasma with the
optimal value of the parallel refractive index N‖ = N‖conv 7.50. To launch this wave, we
determine the perpendicular component of refractive vector N⊥X for X-mode from the
solution of the dispersion relation:

Dhot(X̂(ρconv),Ŷ (ρconv), T̂ (ρconv),N‖opt ,N⊥X ) = 0. (7.52)

For these conditions, N⊥X should be close to zero.
The code calculates the input grill parameters rhopsi0(1)=ρconv anmin(1)=N‖opt −

0.01 and anmax(1)= N‖opt + 0.01. For this case.\, the code uses one ray launch.
So we see in genray.dat file: ngrill=1, nthin(1)=1, nnkpar(1)=1. The parameters
rhopsi0(1), height(1) anmin(1), anmin(1) in genray.dat file can be arbitrary; they
will not be used.

7.4 Initial refractive index vector inside the plasma

The refractive vector −→N 0 at the initial space point P0 consists of the vector parallel to
the flux surface −→N 0‖ψ ( −→N 0‖ψψ ·∇ψ = 0) and the vector perpendicular to flux surface
−→N 0⊥ψ :

−→N 0 =
−→N 0‖ψ +

−→N 0⊥ψ . (7.53)
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At the plasma-vacuum boundary Γ , the parallel refractive index −→N 0‖ψ should be the
same for both the vacuum and plasma sides. We determine the parallel refractive index
(that is, in the flux surface) at the vacuum side of boundary :Γ

−→N 0‖ψΓ
= N0ϕ

−→e ϕ +N0θ
−→e θ. (7.54)

Here, N0ϕ is the toroidal component of the refractive index at the initial point; N0θ
is the poloidal component of the refractive index at the initial point; −→e ϕ is the unit
vector in the toroidal direction; −→e θ = ∇ψ×−→e ϕ/|∇ψ| is the unit vector in the poloidal
direction. The perpendicular to the magnetic surface refractive index vector directed
into the plasma is equal to:

−→N 0⊥ψ = −N0⊥ψ ∇ψ/|∇ψ|. (7.55)

The poloidal flux function has been assumed to be an increasing function from the
magnetic axis, the usual convention in the EQDSK files. Here, N0⊥ψ is the small radial
component of the refractive index that can be calculated from the dispersion relation
for given N0‖ and N0ϕ , N0θ .

The different models of the wave launch described in the previous sections 7.1, 7.2,
7.3 create the initial toroidal N0ϕ and poloidal N0θ components of the refractive index.
Using these components the code calculates the parallel to the magnetic field refractive
index 7.54.

Then the code solves the dispersion relation to find the perpendicular to the mag-
netic field refractive index N0⊥ . The dispersion relation D(N‖,N⊥) = 0 has a set of
roots N⊥k . Each root corresponds to a specified wave mode. Genray.dat file input has
two switches for root choice.

ioxm=±1 determines the sign before the root in the cold plasma dispersion relation
4.12, and O-mode (ioxm=+1) or X-mode (ioxm=-1) for the solution of the Mazzucato
dispersion relation 4.37.

ibw specifies the launch of EBW. If ibw=1, the code launches a Bernstein wave
using the hot plasma dispersion relation and grill conditions istart=2. If ibw=0, the
code launches O or X modes.

Using the found root N0⊥ the code calculates the module of the small radial compo-
nent of the refractive vector directed perpendicular to the magnetic surface

|−→N 0⊥ψ | =
√

N2
0⊥

+N2
0‖
−N2

0ϕ
−N2

0θ

The code has the possibility to launch the wave towards the interior of the plasma
or in the outwards direction. The direction of the small radial component of the wave
group velocity −→v grψ is determined by the direction of the small radial refractive vector
−→N 0⊥ψ . The code chooses the sign of −→N 0⊥ψ to get the necessary direction of −→v grψ
.The input parameter i_vgr_ini given in genray.dat determines the direction of −→v grψ
in the initial point. For the wave directed into the plasma i_vgr_ini=+1 and−→v grψ is
anti-parallel to ∇ψ . For i_vgr_ini=-1 the small radial wave group velocity directed
out of plasma. It is assumed that the poloidal flux has a minimum inside the plasma.
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Figure 7.1: The refractive index components in the poloidal pane.
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7.5 Reflection from the plasma vacuum boundary
Near the plasma vacuum boundary, the code can reflect the rays. The variable ireflm
determines the maximum number of reflections for each ray. It is proposed that plasma
boundary Γ can be represented by two functions versus major radius zmin(r), zmax(r),
where rmax < r < rmin. If the point of the ray trajectory Pre f lect (r,z) goes close to the
plasma boundary:

r < rmin + epsbnd or rmax − epsbnd < r
z < zmin + epsbnd or zmax − epsbnd < z , (7.56)

the subroutine bound reflects the ray at this point. Here epsbdn is a parameter given
inside subroutine bound. At the reflection point Pre f lect(r,z), the code changes the sign
of the normal to the flux surface component of the refractive index,

−→N re f lect⊥ψ = Nre f lect⊥∇ψ/|∇ψ|, (7.57)

and conserves the parallel to the flux surface refractive index component,

−→N re f lect‖ψ = Nre f lectϕ
−→e ϕ +Nre f lectθ

−→e θ. (7.58)

The refractive vector before reflection has the form:

−→N re f lect =
−→N re f lect‖ψ +

−→N re f lect⊥ψ . (7.59)

The refractive vector after reflection has the form:

−→N re f lect =
−→N re f lect‖ψ −−→N re f lect⊥ψ . (7.60)

If reflection is not needed, we set the parameter ireflm equal to unit (ireflm=1).
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Electric field polarization

The code calculates electric field polarization along ray trajectories. The electric field−→E is the unit vector which satisfies equations 1.6 for different forms of the dielectric
tensor. The condition for this solution is the dispersion relation D = 0 1.7. For any
given computational accuracy, the numerical solution of the ray-tracing equations1.8
gives the numerical error for the ray variables. This error leads to non-zero dispersion
function D 6= 0 along the ray trajectory. So, formally the system 1.6 will have no
solution. Therefore, we must determine the polarization for equations 1.8 with non-
zero dispersion function. We use the following approach:

d11E1 +d12E2 +d13E3 = 0
d21E1 +d22E2 +d23E3 = 0.
d31E1 +d32E2 +d33E3 = 0

(8.1)

System 8.1 determinant is D = ∑i=1,3 d jia ji. Where j is the number of chosen
matrix row and a ji is a cofactor of the element d ji. The solution of system 8.1 has the
following form:

Ek = a jk. (8.2)

To check it, we put 8.2 into 8.1

d11a j1 +d12a j2 +d13a j3 = 0
d21a j1 +d22a j2 +d23a j3 = 0.
d31a j1 +d32a j2 +d33a j3 = 0

(8.3)

The condition of the solution is D = 0. Let p be the number of the row in the system.
The equation 8.3 has the form:

∑
i=1,3

dpia ji = 0. (8.4)

If index j coincides with the number of row j = p, then,

∑
i=1,3

dpiapi = D = 0. (8.5)
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If j 6= p, then ∑i=1,3 dpia ji = 0 as the determinant of the matrix with two coincided
rows (dp1,dp2,dp3).

Due to numerical errors, determinant D does not equal zero. In this case we use
equation 8.2 for the electric field determination. The number of matrix row j is chosen
from condition:

a ji = max
pk

|apk|. (8.6)

The electric field is normalized to unit length.
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Current drive

The code calculates the current drive (CD) j = ηPabsorp (current density) along the ray
trajectories using various possibilities to determine CD efficiency η and absorbed wave
power Pabsorp. CD efficiency η is normalized at (A/cm2)/(erg/(c∗ cm3)). The switch
for choosing the CD efficiency form is ieffic . The specification of the wave harmonic
is determined by variable jwave.
ieffic=1

CD efficiency is calculated using the following simplest asymptotic formula for
uniform non-relativistic plasma.

jwave=1 for EC wave first harmonic;
ηEC = 3

2(5+Ze f f )
(u2 +(2+ 3

2(3+Ze f f )
));

jwave=0 for lower hybrid (LH) wave;
ηLH = 2

(5+Ze f f )
(u2 +( 7

4 + 9
4(3+Ze f f )

));
where u is the resonance velocity normalized by electron thermal velocity vTe =

1.87∗107√Te (m/c), Te (keV), u = c
vTe

(1− jwYe)/N‖.
ieffic=2

In this case CD efficiency is calculated using the asymptotic formulas (D.A. Ehst
and F.F. Karney, 1991) [13]

a) jwave=0
Landau damping of LH waves resonant at parallel velocities above the electron

thermal velocity.
b) jwave=-1
Slow frequency fast (compressional Alfven) waves (AW) resonant with low phase

velocity electrons via combined Landau damping and transit time magnetic damping.
ieffic=3

CD efficiency is calculated using the CURBA subroutine (R.H. Cohen, 1987) [14],
[15] for relativistic electron plasma in toroidal plasma with passed and trapped parti-
cles.
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Power and current drive radius

The code can calculate the absorbed wave power and CD profiles versus the chosen
small radius 2.10-2.13. To switch on the profile calculation, we use ionetwo=1. In
other cases, ionetwo=0. The code calculates the absorbed power along all ray trajecto-
ries. It uses this power and the CD efficiency to calculate the current generated in the
plasma. Using these data, the code creates profiles averaged over the magnetic surfaces
of the absorbed power and power density, the current and current density.
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Numerical methods

11.1 Numerical solution of ray-tracing equations
The code has several possibilities for the numerical solution of ray tracing ODE equa-
tions. The switch irkmeth specifies the method.
irkmeth=0

This is the Runge-Kutta 4th order method with constant time step. The code con-
trols the position of the trajectory near the plasma vacuum boundary and reduces the
time step if the ray point goes outside the plasma 7.56 in one of the sub-steps of the
Runge-Kutta procedure. This control is produced in boundc subroutine. The param-
eter epsbnd is set inside boundc subroutine . The value of this parameter can differ
from the value epsbnd in bound subroutine.

irkmeth=1
This is the Runge-Kutta 5th order method with variable time step. In this case,

the code changes the time step to get accuracy. It uses the algorithm described in
(W.H.Press et al., 1999)[16] (chapter 16.2).
irkmeth=2

This is the Runge-Kutta 4th order method with variable time step. In this case, the
code changes the time step to get accuracy. In this case, the code controls the position
of the point near the plasma vacuum boundary as done in irkmeth=0.

11.2 Hamiltonian conservation
The ray tracing equations 1.8 are of the Hamiltonian type, where the dispersion func-
tion D plays the role of the Hamiltonian. Along the ray trajectory the dispersion func-
tion conserves zero value D = 0. Inaccuracy in the numerical integration of the ray
tracing equations leads to errors in ray coordinates −→q = (

−→R ,
−→N ). Small deviation in

these coordinates can lead to significant deviation in the dispersion function from zero.
The non-zero value of the dispersion function D, for example, can give a wrong electric
field polarization. The code has two possibilities to conserve the Hamiltonian.
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a) The Hamiltonian D has error ε at each time step of the numerical solution of
ray-tracing system D(−→q ) = ε. The small correction 4−→q can conserve the zero Hamil-
tonian value

D(−→q +4−→q ) = 0. (11.1)

There is one equation for six variables. The additional condition for the correction4−→q
can be the minimum of the norm |4−→q |. For this condition, the full problem for the
correction has the following form:

{
J = |4−→q |2 = ∑i=1,6(4qi)

2 → min
D(−→q +4−→q ) = 0 . (11.2)

We use the Lagrange function L = J(4−→q ) + λD(−→q +4−→q ) for solution 11.2. The
derivative from this function gives the equations for 4−→q and λ :

24qi +λ ∂D(−→q +4−→q )
∂qi

= 0, i = 1, ...,6.

D(−→q +4−→q ) = 0
(11.3)

The first equation in 11.3 gives:

4qi = −λ
2

∂D(−→q +4−→q )

∂qi
, i = 1, ...6. (11.4)

After substitution 11.4 for the second equation 11.3 we have:

D(−→q − λ
2

∇D(−→q +4−→q )) = 0. (11.5)

To solve 11.5 we use the iteration process based on its linearization:

D(−→q − λ
2

∇D(−→q +4−→q )) = D(−→q )− λ
2 ∑

i=1,6

∂D(−→q )

∂qi

∂D(−→q +4−→q )

∂qi
= 0. (11.6)

Let l be the number of iterations with the initial parameters −→q (0) =−→q , 4−→q (0) = 0 and
λ(0) = 0. The iteration process (l = 1,2, ...) has the following form:

−→q (l) = −→q +4−→q (l−1) (11.7)

λ(l) =
2D(−→q )

∑i=1,6
∂D(−→q )

∂qi

∂D(−→q (l−1)
)

∂qi

(11.8)

4q(l)
i = −λ(l)

2
∂D(−→q (l−1))

∂qi
= − D(−→q )

∑i=1,6
∂D(−→q )

∂qi

∂D(−→q (l−1)
)

∂qi

∂D(−→q (l−1))

∂qi
. (11.9)

The condition for the final iteration is |D(−→q (l+1))| < εcorrection .
b) For large values of the perpendicular refractive index N⊥, the previous method

does not reach accuracy in some conditions. In this case, we use the correction pro-
cedure based on the solution of dispersion relation D(N‖,N‖,X ,Y,T ) = 0. After each
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time step of the numerical solution of the ray-tracing equation, we get ray coordinates
−→q = (

−→R ,
−→N ). These coordinates give the values of the parallel and perpendicular

refractive vectors −→N ‖, −→N ⊥. Using given N‖ , we calculate the corrected perpendicu-
lar refractive index N⊥corrected from the solution of the dispersion relation. We correct
only two components of refractive index (Nrcorrected ,Nzcorrected ). The toroidal compo-
nent is not corrected. Then the corrected values of the refractive index coordinates
(Nrcorrected ,Nzcorrected ) are calculated with the following system:

BrNrcorrcted +BzNzcorrected +BϕM/r = BN‖
N2

rcorrected
+N2

zcorrected
+(M/r)2 = N2

‖ +N2
⊥corrected

.
(11.10)

This system can give two solutions. We choose the solution that has minimum distance
from the non-corrected values. For some conditions the system 11.10 has no solution.
In this case the code gives a warning.

11.3 Differentiation of the dispersion function
The right hand side of ray-tracing equations 1.8 contains a set of the first derivatives
from dispersion function D. The dispersion functions have many difficult formulas;
therefore, the calculation of analytical derivatives from these formulas can be a source
of error. Another problem is that in some cases the subroutine calculates the dispersion
function but does not calculate derivatives from this function. The code can calculate
these derivatives using the analytical (idif=1) or numerical (idif=2) differentiation. The
switch idif is the input parameter in genray.dat file.

11.4 Algorithm giving the output data at the set radial
steps

It is convenient to generate the output data from GENRAY at the poloidal distances
close to the mesh points si = ihs specified by the poloidal step size hs. The input step
size prmt6= hs is given in genray.dat file.

The code calculates the poloidal distance ln
poloidal = ∑n

i=14ln
poloidal along the tra-

jectory at the each time tn. The time step τ = tn − tn−1 is automatically determined
by the given Runge-Kutta method accuracy . Here 4ln

poloidal =
√

(4rn)2 +(4zn)2,
4rn = rn − rn−1 and 4zn = zn − zn−1 are the increments of the poloidal distance and
r, z variables for one time step. If ln

poloidal > si + εshs then the trajectory have jumped
throw the necessary output mesh point si. Here εs > 0 is the given small positive num-
ber. In this situation GENRAY goes back to the previous time tn−1 point (−→R n−1

,
−→N n−1

)
takes the new time step

τnew = τ(si−1 + εshsl − ln−1
poloidal)/4ln

poloidal (11.11)

and calculates the position of the new ray point (
−→R n

,
−→N n

) using the Runge-Kutta
method with the constant time step. The formula 11.11 was obtained from the linear
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approximation of the poloidal distance dependence from the time. After that GEN-
RAY calculates the new value of the poloidal distance that will be used as the output
poloidal point. If the automatically calculated time step τ is much bigger than τnew, the
used algorithm can slow the calculations significantly.

GENRAY has the possibility to switch off writing the output dat to the 3d.dat file.
The input variable iout3d that makes it is in genray.dat file. For iout3d=’enable’
GENRAY writes 3d.dat file, for iout3d=’disable’ GENRAY does not write it.



Chapter 12

Electron cyclotron emission.

It works if the variable i_emission=1 in GENRAY.dat file.

12.1 Radiation transport equation for the the radiative
power.

Electron cyclotron emission can be a sensitive indicator of nonthermal electron distri-
bution. GENRAY calculates the emission follow the model proposed in [6]. In the
WKB approximation, the radiation transport equation [18] gives I, the power in each
wave mode per unit area-radian frequency-steradian following along rays in the plasma:

n2
r
−→s ·∇(n−2

r I) = j−αI (12.1)

Were ŝ is a unit vector along in the ray the ray trajectory mode under consideration,
nr is the ray refractive index [18], emissivity j is the power radiated by the the plasma
per unit volume radian frequency-steradian, and α is the inverse damping length along
the ray of rf wave energy. The ray emission trajectories can be calculated using the
different types of the dispersion functions specified by the option id.
The formula for the ray refractive index is given in [18]

n2
r =

∣∣∣∣∣∣∣∣∣∣∣

n2 sinθ

[
1+

(
1
n

∂n
∂θ

)2

ω

]1/2

∂
∂θ

{
cosθ+( 1

n
∂n
∂θ)ω sinθ

[
1+( 1

n
∂n
∂θ)

2
ω

]1/2

}

∣∣∣∣∣∣∣∣∣∣∣

(12.2)

GENRAY has the several possibilities to calculate the ray refractive index nr. The input
variable i_rrind in genray.day file determines the used formula for nr. For i_rrind=1
nr = n; for i_rrind=2 the ray refractive index nr will be calculated using 12.2 and the
cold electron plasma dispersion function; i_rrind=3 the ray refractive index nr will be
calculated using 12.2 and the hot non-relativistic plasma dispersion function.
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The absorption and emission coefficients are given by Refs.[6], [19] and [20]:

α =
ω
4π

−→E ∗ · ε̂ ·−→E
|S| (12.3)

j = πn2
r (

ω
c

)2
−→E ∗ · Ĝ ·−→E

|S| (12.4)

Where−→E =
−→E (ω,

−→k ) is the space-time Fourier transform of the electric field, −→S (ω,
−→k )

is the energy flux density per frequency and per unit volume in −→k space,

−→S = −→v gU (12.5)

and −→v gr is the wave group velocity 1.8. We use the conventions in Refs. [6], [19] and
[20], which give spectral energy density U,

U =
1

8π
(
−→B ∗ ·−→B +

−→E ∗ · ∂(ωε̂h)

∂ω
·−→E ) (12.6)

In this equation we use Hermitian dielectric tensor coefficients ε̂h for different dielectric
tensors. It is essential that relativistic expressions be used for anti-Hermitian dielectric
tensor elements ε̂a and the corresponding the correlation tensor G for the fluctuating
current density. These are obtained from the momentum relativistic electron distribu-
tion function f [18], [6],[7]

ε̂relativista = −π
ω2

p

ω2

n=∞

∑
n=−∞

Z

d3 pU (n)( f )Ŝ(n)δ(γ−
k‖v‖

ω
− nωce

ω
), (12.7)

Ĝ = − π
(2π)5

ω2
p

ω2
1

me

n=∞

∑
n=−∞

Z

d3 p
1
γ

f p⊥Ŝ(n)δ(γ−
k‖v‖

ω
− nωce

ω
) (12.8)

The formula 5.3 for anti-Hermitian part of the relativistic dielectric tensor were dis-
cussed previously in the chapter “Wave power absorption”. The formula for the cor-
responding the correlation tensor G for the fluctuating current are used the same ap-
proach.

The emission equation along the ray trajectory s starting at the detector has the
following form.

−n2
r

d
s
(n−2

r I) = j−αI (12.9)

Here ŝ is a unit vector in the opposite ray direction, s = 0 at the detector . The solution
of the eq. 12.9 is

n−2
r (s)I(s) = C0 exp(

Z s

s0

α(t)dt)−
Z s

s0

j(t)
n2

r (t)
dt exp(

Z s

t
α(q)dq) (12.10)

Let we will calculate the power of the emission along the ray with the length L and

I(L) = 0 (12.11)
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Using 12.11 we get from 12.10

0 = C0 exp(

Z L

s0

α(t)dt)−
Z L

s0

j(t)
n2

r (t)
dt exp(

Z L

t
α(q)dq) (12.12)

It gives the value of the constant

C0 = exp(−
Z L

s0

α(t)dt)
Z L

s0

j(t)
n2

r (t)
dt exp(

Z L

t
α(q)dq) (12.13)

Using 12.13 in 12.10 we get the emission power at the s0 point

n−2
r (s0)I(s0) = C0 = exp(−R L

s0
α(t)dt)

R L
s0

j(t)
n2

r (t)
dt exp(

R L
t α(q)dq) =

=
R L

s0

j(t)
n2

r (t)
dt exp(−R t

s0
α(q)dq)

(12.14)

So, the emission power at s0 has the form

I(s0) = n2
r (s0)

Z L

s0

j(t)
n2

r (t)
dt exp(−

Z t

s0

α(q)dq) (12.15)

The emission at the detector s0 = 0 is

I(0) = n2
r (0)

Z L

0

j(t)
n2

r (t)
dt exp(−

Z t

0
α(q)dq) (12.16)

Let introduce the mesh along the ray sn, n = 1, ...,N, where the value s at the detector is
s1 = 0. The emission In from nth bin sn < s ≤ sn+1 can be obtained from the equation

−n2
r

d
ds

∇(n−2
r In) = jΠn(s)−αIn (12.17)

with the condition
In(sn+1) = 0 (12.18)

Here

Πn(s) =

{
1,sn < s ≤ sn+1

0,elsewhere

)
(12.19)

The solution of 12.17 can be obtained from12.14

n−2
r (s)In(s) = C0n exp(

Z s

sn+1

α(t)dt)−
Z s

sn+1

j(t)Πn(t)
n2

r (t)
dt exp(

Z s

t
α(q)dq) (12.20)

Using 12.18 we can find C0n

n−2
r (sn+2)In(sn+1) = C0n = 0 (12.21)

It gives the emission

n−2
r (s)In(s) =

Z sn+1

s

j(t)Πn(t)
n2

r (t)
dt exp(

Z s

t
α(q)dq) (12.22)
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Using 12.19 we get the following form for the emission In

n−2
r (s)In(s) =

{
R sn+1

s
j(t)

n2
r (t) dt exp(

R s
t α(q)dq),sn < s ≤ sn+1

R sn+1
sn

j(t)
n2

r (t)dt exp(
R s

t α(q)dq),s ≤ sn
(12.23)

This formula gives the value of In at the the detector side of nth bin at s = sn

n−2
r (s = sn)In(s = sn) =

Z sn+1

sn

j(t)
n2

r (t)
dt exp(−

Z t

sn

α(q)dq) (12.24)

This integral 12.24 can be evaluated as

n−2
r (s = sn)In(s = sn) ≈

j(sn+1/2)

n2
r (sn+1/2)

R sn+1
sn

exp(−α(sn+1/2)(t − sn))dt =

=
j(sn+1/2)

n2
r (sn+1/2)α(sn+1/2)

(1− exp(−α(sn+1/2)(sn+1 − sn))
(12.25)

The emission In at the detector s = 0 I0n has the the form

n−2
r (s = 0)In(s = 0) =

R sn+1
sn

j(t)
n2

r (t)dt exp(−R t
sn

α(q)dq− R sn
0 α(q)dq)) =

= n−2
r (s = sn)In(s = sn)exp(−R sn

0 α(q)dq)
(12.26)

The last integral in 12.26 can be evaluated as

τn =

Z sn

0
α(q)dq) ≈

{
∑n

m=1(sm − sm−1)αm−1/2,n ≥ 2
0,n = 1 (12.27)

It gives
n−2

r (s = 0)In(s = 0) = n−2
r (s = sn)In(s = sn)exp(−τn) (12.28)

The specific intensity equal to In(s = 0)/4s for each spatial bin 4s = sn+1 − sn can
has a very narrow and top peaks along the ray [6]. In [6] it was proposed the procedure
that adds the points along the calculated ray in the vicinity of these peaks.

Typically the number of points along the ray trajectory N=100 is sufficient to
coarsely resolve the main contribution of all peaks. The mesh along the ray is then
refined by calculating additional values of α and j have been calculated, and where the
resultant In(s = 0) are grater than t ·I(s = 0); t is a tolerance parameter, typically t=0.01.
This refinement procedure thus adds calculations of α and j only at those points along
the ray where they contribute significantly to the signal arriving at the detector.

The code can obtain emission from multiple passes across the tokamak; the ray
is assumed to specularly reflect off the vacuum chamber wall. Mode conversion at
the wall is not considered. Usually, though, a simple procedure [6] is employed for
optically thin frequencies. This is done in view of the very complicated, and changing,
nature of the vacuum vessel. A single pass is considered to fully represent any of the
passes across the tokamak and back. The total radiation In(s = 0) is given by

I0t = I0(1+ r exp−τ +r2 exp−2τ +...) = I0/(1− r exp−τ) (12.29)
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The variables tol_emiss=τ (0<tol_emiss<1) and wallr=r (0<wallr<1) are given in gen-
ray.dat file in namelist /emission/ input data.
GENRAY can calculate the emission at the detector point for the set of the the wave
frequencies. The variable nfreq (in GENRAY.dat file in namelist /emission/) deter-
mines the number of the used frequencies. The maximal value of nfreq is set by the
parameter nfreqa in param.i file. For nfreq=1 the emission frequency determined by
the variable frqncy(GHZ) given in GENRAY.dat file in namelist /wave/. For nfreq>1
the code uses the following frequencies

ωi f req = ω0EC( f reqncy00+
f req01− f req00

n f req−1
(i f req−1)) (12.30)

Where ω0EC is the electron cyclotron gyro-frequency at the magnetic axis, freq00≤
freq01 are the ratios of the minimal and maximal emission frequencies to the central
electron-cyclotron frequency.

12.2 Radiation temperature.
The radiation temperature along the ray is calculated by the following formula [18]

Tr =
1
n2

r

j
α

8π3c2

ω2 (12.31)

The specific emission intensity In(s = 0)/4s at the detector has the sharp maximum
in some point along the ray [6]. The code determines the point P0 = (r0,z) where the
specific intensity In(s = 0)/4s reaches the maximal value on the given ray. This point
gives the maximum impact to the total emission and to the radiation temperature from
the ray. The the ray radiation temperature can be calculated using the total radiation at
the plasma edge [18]

Tirad =
2πc2I0i

f 2
i

(12.32)

For the ray radiation temperature with the wall reflection we use the following formula

Ttirad =
2πc2I0ti

f 2
i

(12.33)

were i ≡ i f req is the number of the ray, and fi is the wave frequency that was used for
the ray with the number i=1,...nfreq. Due to the sharp form of the specific emission
intensity the ray radiation temperature should coincide with the plasma temperature
in the point P0 = (r0,z). For comparison the code calculates the plasma temperature
Tplasma(P0).

12.3 Emission plots.
GENRAY launches the several rays differer by the frequencies from detector points.
It can use the several detector points set by EC cone or grill launch input data. The
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detector point specified by the space position and the vector refractive index.
Firstly the code calculates the ray trajectories and writes the ray coordinates along the
rays in GENRAY.bin file. To get xdraw plots of these trajectories we should use the
commands xdraw genr or xdraw emis.

Along all trajectories the code calculates several variables that can be plotted by
xdraw using the command xdraw em:

In(s = sn)/4s is the specific intensity from one bin sn < s < sn+1 at detector side
of n_th bin at s = sn, 4s = sn+1 − sn,

In(s = 0)/4s is the specific intensity from one bin sn < s < sn+1 at the plasma
boundary s = 0,

I0sn = ∑n
k=1 Ik(s = 0) is the emission at the plasma boundary at s = 0 from the part

of the ray 0 < s < sn,
τn =

R sn
0 α(s)ds is the optical depth,

Tpl is the plasma temperature along the ray,
Trad is the radiation plasma temperature 12.31 along the ray.

The command xdraw emf1 creates the plots of the ray radiation temperature, the ray
radiation temperature with wall reflection, the coordinates of the point P0 = (r0,z), the
plasma temperature versus the ratio ω/ωc0. Here ω = 2π f is the wave frequency at the
given ray, ωC0 is the electron cyclotron frequency fat the magnetic axis.
In some cases it is useful to compare the ray radiation temperature with the temperature
where the wave frequency coincide with the second EC harmonic. The code has the
option i_r_2nd_harm. If i_r_2nd_harm=1 it code will determine the major radius
of the second EC harmonic resonance point point P2dnEC(r2nd ,z = 0) at the midplane.
The command xdraw emfr plots of the plasma temperature at the second harmonic EC
points.
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GENRAY usage

13.1 Preliminaries
The GENRAY code is written in standard FORTRAN-77 and runs without modifica-
tions on Cray, Sun Stations, IBM Pentium PC. There are no mathematical library calls.
All necessary routines are parts of the source code. The Fortran source files have the
extension *.f.

There are a number of INCLUDE files for setting parameters and specifying com-
mon blocks. The INCLUDE files have the extension *.i. The include file param.i sets
all the parameters for the code.

MAKEFILE compiles the code at Linux g77 compiler for IBM PC, f77 compiler
Sun stations and the CF77 Cray compiler.

The are a number of *.in files. They are the command files for plotting the data from
*.bin files under XDRAW graphic system. The file xdraw.ini is for color printing of
figures made under XDRAW system. The command xdraw files (*.in) have the names:
drawname.bin. To run the command file, we use the following command: xdraw -c
name. The option -c is for color printing.

The code uses two input files:

equilib.dat This is a copy of eqdsk file
genray.dat Inputs the data for all NAMELISTs used in the code.

The code creates the following output files:

con1 some input data from the eqdsk file
3d.dat output data along all the rays for CQL3D code

genray.bin output data for plotting the rays under XDRAW
onetwo.bin for plotting power and CD radial profiles under XDRAW
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13.2 Genray flowchart
The main code program is genray. It is in genray.f file. The flowchart of this program
is the following figure:
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program

GENRAY

call equilib

read(genr)
read(tokamak)

call rhospl

call dinit_mr

call  onetwoini

call gr3

1. creation the spline coefficinets for r(psi,theta)

1. reads all input data from genray.dat file

call arrays

call write3d1

5. creation the spline for the limiter: z_limiter_plas(r), z), z _limitter_minus(r)
    (the top and the bottom plasma boundaries)

2. creation the splines for density(rho), temperature(rho), Z_eff(rho)

2. creation the spline for small radius rho(psi) and psi(rho)

1. reads the namelist genr data from genray.dat file

2. reads the namelist tokamak from genray.dat file

1. initialization the arrays for ODE solver

1. initialiszation of the arrays for the output 3d data

1. initialization  the arrays for power and current drive radial profiles 

    the tokamak toroidal cross section
1. creation the circules on the horizontal plate (X,Y) for  drawing 

    or O_X_EBW case
3. calculation the initial data for EC cone, grill antenna conditions 

2. creation the spline coefficients for psi(r,z), f(psi), pressure(psi)

    the poloidal cross section
4. creation the cordinates AR,AZ contours psi(r,z)=const for plotting 
    (psifactr<1 it is set in gr2new)
3. creation the limiter surface from  psi(r,z)=psisep*psifactr 

-list1-

1. reading equilib.dat file with the magnetic field data 
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call dinit_1ray

2. calculation the values of N_toroidal and N_theta  in P point

4. calculation the initial data (r,phi,z,,N_r,M,N_z) for the ray tracing equations

call drkgs(0, 1 or 2)
2. preparartion the output data along the trajectiory

call mk_graph .

call mk_grapc calculation of the contours omega_c=const 
at the poloidal plate (r,z)

call sonetwo

end the loop
over all rays

end of the code

from all rays

writing *.bin files for drawing power and current drive radial profiles

The loop over all

 rays: iray=1,...,nray

1. calculation of the power and current drive radial profiles

1. calculation of the initial location P of the trajectory in the plasma

3  writes the output 3d data to 3d.dat file

1. writes the output data for one ray to  *.bin files

1. calculations the radial profiles of power  and current drive

-list2-

call donetwo

call mk_gronetwo

    from the solution of the dispersion relation in P point
3. calculation of the chosen wave mode N_perpendicular(N_parallel)  

Figure 13.1: Flowchart of the main program.
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13.3 Parameter input
The variables in the form of PARAMETERS are set in param.i file. The list of these
PARAMETERS is given below.

——-for common block cone.i
nraymax is the maximum number of antenna rays. It must be greater or equal to the
total number of rays nray, calculated in cone_ec routine.

——-for common block five.i
nxeqda is the maximal number of points in horizontal (X) direction in equilib.dat
(eqdsk) file, it should be nxeqda.ge.nxeqd;
nyeqda is the maximal number of points in vertical (Y) direction in equilib.dat (eqdsk)
file, it shoild be nyeqda.ge.nyeqd;
nlimit is the number of limiter points in equilib.dat (eqdsk) file or for calculation of
the limiter surface;
nx4a=nxeqda+4, ny4a=nyeqda+4, nrya=ny4a, nlim4=nlimit+4 are the numbers of
the points for the spline approximation of the poloidal flux and the plasma limiter. AT-
TENTION: this must be nrya=max(nxeqda,nyeqda)+4.

——- for common fourb.i
nves is the number of vacuum vessel points.

——- for common gr.i
npsi is the number of flux surface contours ψ j = ψmag + hψ( j − 1), hψ = (ψlimiter −
ψmag)/(npsi−1), j = 1, ...,npsi. These contours are used to determine the connection
between the poloidal coordinate system (ψ,θ) and the Cartesian coordinates r(ψ,θ),z(ψ,θ).
Here ψmag is the poloidal flux at the magnetic axis (xmag,ymag) and ψlimiter is the
poloidal flux at the limiter or the last closed flux surface.
nteta is the number of points along each flux contour in the poloidal direction ψ(zpsi(ψ j,θi),rpsi(ψ j ,θi)) =
ψ j. The poloidal angle is measured in counter clockwise direction from the hori-
zontal plate. This horizontal plate goes through the magnetic axis; θi = hθ(i− 0.5),
hθ = 2π/nteta, i = 1,nteta1
nteta1=nteta+1
epspsi is the accuracy for determination of the contour point coordinates ψ(zpsi,rpsi) =
ψ j

NL is the number of the poloidal flux contours for plotting the tokamak poloidal
cross section,
NP=ntheta is used for plotting the tokamak toroidal cross section

——-for common grill.i
ngrilla is the maximal number of poloidal grills; see grill launch Section 7.2 nnkprmax=maxi=1,ngrill nnkpar(i)
nnktormax=maxi=1,ngrill nnktor(i)
nnkpolmrax=maxi=1,ngrill nnkpol(i)
nthinmax=maxi=1,ngrill nthin(i)
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r

z

Xmag, Ymag

Psi_mag

Psi_limiter
Psi_j

Theta_i

r(psi_j,theta_i),z(psi_j,theta_i)

0

Figure 13.2: Flux coordinates

nraymaxl is the maximum number of rays from the grill antenna

——-for common ions.i
ncompa is the maximum number of plasma species; this must be ncomp ≥ nbulk ≥ 1

——-for common onetwo.i
NR is the number of points in the small radius direction for calculation of the power
and current drive radial profiles.

——-for common rho.i
npsi4=npsi+4, nteta14=nteta1+4 are the number of points for the spline approxi-

mation of the small radius as a function of the poloidal flux .
——-for common six.i
ndensa is the maximal number of the points in the input arrays with density, tempera-
ture and Zeff small radial profiles.
ndens4a=ndensa+4
——-for common write.i
nrelta is maximum value for nrelt. Where nrelt is the maximum number of output ray
points along every ray
nraya is the maximal value of the rays
nfreqa is the maximal value for nfreq the number of the emission frequencies
——-for common scatnperp.i (data for N⊥scattering)
nscat_n is the number of points in arrays rhoscat(nscat_n) and scatd(0:nscat_n)
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——-for common dskincomm
iya is the maximal number of the points in the pitch angle mesh for the input distribu-
tion functions
ixa is the maximal number of the points in the momentum mesh for the input distribu-
tion functions
irza is the maximal number of the points in the small radial mesh for the input distri-
bution functions
ngena is the maximal number of the plasma species for the input distribution functions



Chapter 14

Examples

14.1 Fast wave in D3D in cold plasma
We use the following input data for fast wave launch in D3D:

1) Dispersion relation: cold plasma, id=2
2) FW absorption iabsorp=3
3) Plasma species nbulk=3
electrons and two sorts of ions: Deuterium D(charge(2)=1, dmas(2)=3674) and

Oxygen O (charge(3)=6, dmas(3)=22044)
4) Wave frequency - 60 MHZ
5)Center plasma density ne=4.46∗1019m−3, nD=4.46∗1019m−3, nO=0.446∗1019m−3

6) Center plasma temperature Te = 3.59KeV , TD = 3.23KeV , TO = 3.23KeV
7) Wave power 0.683 MWT.
The results of GENRAY calculations for FW launch in D3D are plotted in these

two sets of figures.
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Figure 14.1: FW in D3D. a) Ray trajectory and refractive index and Y_i along the ray.
The poloidal distance is the projection of the ray length on the poloidal cross-section.
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Figure 14.2: FW in D3D b) Wave power along the ray and small radius profiles of
absorbed wave power density and current drive density.
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