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FOKKER-PLANCK FORMULATION FOR RF CURRENT DRIVE,
INCLUDING WAVE DRIVEN RADIAL TRANSPORT
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ABSTRACT

A toroidal, relativistic, three-dimensional Fokker-Planck model for RF current drive
is presented. The model properly accounts for the coupling of radial and velocity space
dynamics, as driven by the wave-particle interaction and by collisional scattering (in the -
weak collisionality, or “banana regime”). The quasilinear RF diffusion tensor (in a three-
dimensional constant of motion space) is cast in a form which can be evaluated from ray
tracing models. The tensor elements responsible for radial transport effects are seperated
into classical and neoclassical contributions. The classical contributions are largely driven_
by the poloidal components of the wave vectors, which are sensitive to toroidal effects as
the waves propagate into the plasma. The neoclassical contributions are driven by spatially
localized diffusion in energy and pitch-angle. The formulation is intended for numerical
simulation of highly non-Maxwellian distribution functions, including wave driven and
collisional transport effects.

1. INTRODUCTION

Externally injected waves drive toroidal current in tokamaks by appropriately distort-
ing the electron distribution function through quasilinear diffusion. Lower-hybrid waves
and fast Alfven waves induce diffusion in parallel velocity, while electron cyclotron waves
induce diffusion primarily in perpendicular energy. These effects are adequately described
by two-dimensional velocity space Fokker-Planck models. To model the RF current profile
in experiments, the velocity space Fokker-Planck equation is solved (usually numerically)
at a number of radial grid points, where the local quasilinear diffusion coefficients are ob-
tained from a numerical treatment of the wave propagation and damping. Although such
an approach can often provide an adequate description of the current profile, questions
still arise concerning the effect of fast electron radial transport. These questions concern
both anamolous, as well as RF driven and neoclassical transport effects.

The effect of anamolous transport has often been a concern in RF current drive and
various researchers have considered the addition of a phenomenalogical radial diffusion
term to the velocity space Fokker-Planck equation. It has been found that the radial
diffusion of fast electrons can significantly effect the RF driven current profile (relative
to the local RF absorption profile) when the radial diffusion time is on the order of the
collisional slowing down time of fast electrons [1,2]. Although efforts have been made to
incorporate this effect into sophisticated LHCD simulations [3,4], only recently has radial
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transport been included in fully three-dimensional Fokker-Planck simulations [5-7].

The effect of wave induced transport on current drive has been considered previously
by several researchers. Although Antonsen and Yoshioka [8] have developed a systematic
neoclassical transport theory that includes the effect of RF waves, their approach is yalid for
cases when the distribution function is only weakly perturbed by RF quasilinear diffusion
in velocity space. Other researchers have included wave driven radial transport in Fokker-
Planck models that account for strong electron tail formation, but ignore neoclassical
effects [9,10]. Here we present a more complete Fokker-Planck formulation, which includes
both collisional and wave driven transport effects in toroidal geometry.

The unperturbed particle orbits in a tokamak are characterized by three constants of
motion, which we denote by the vector I=(I,I2,I3). The Fokker-Planck equation in I
space can be written in the following form:

9 3 .. .
517 fo(L,2) = 'éTZJ[DU'é?; - F*lfe(1,t) (1)

where a summation convention is implied and fo(I,¢) is the electron distribution function,
averaged over the gyro-phase, bounce-phase, and toroidal angle. The notation is such that
fo is the number of electrons in the volume element 7d®I. The Fokker-Planck coefficients
D and F? are composed of the following contributions: o

D' = DY + D
i iy p 2
F =Fc+FT 3

where D¥ and F} are the collisional coefficients, D;’,. is the quasilinear diffusion tensor

due to the RF fields, and F}- are the coeficients which account for the toroidal electric

field induced by the ohmic transformer. We take I, and I to denote a particle’s magnetic

moment and the energy, whereas I3 is considered to be a radial like coordinate, such as a

particle’s bounce-averaged flux surface. Although the processes associated with anamolous

transport may result in a modification of the Fokker-Planck coefficients in (2), these effects

are not considered here. We note, however, that a reasonable argument can be made for

including anamolous transport in the coefficients D** and F' 3 alone, i.e. by assuming that -
anamolous transport is associated with a purely radial flux.

In the absence of quasilinear diffusion, Bernstein and Molvig [11] have shown that the
above Fokker-Planck formulation is capableif)‘fmféj-ﬁioaﬁcing neoclassical transport theory in
fhe banana regime. The neoclassical bootstrap current is driven by the off-diagonal Fokker-
Planck coefficients D1 and DZ®, which give rise to velocity space flows in the presence
of radial gradients. In RF current drive, the bootstrap effect can be modified by strong
quasilinear diffusion in velocity space and by the off-diagonal Fokker-Planck coefficients
due to the waves themselves, i.e. by the addition of D;? and Dg?. Likewise, the RF fields
can also modify convective radial flows (such as the neoclassical Ware pinch), which are
determined by the net coefficients D3, D32, and F°.

In this paper, we are concerned with the specification of the Fokker-Planck coefficients

appearing in (1). The paper is organized as follows. Section 2 gives a brief review of
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relativistic particle orbits in a tokamak, using the Hamiltonian guiding center technique
developed by Littlejohn [12,13]. The Hamiltonian approach simplifies the formal derivation
of (1) and is useful in the calculation of the quasilinear diffusion tensor. The derivation of
the Fokker-Planck equation, which yields the coefficients DY and F?, is given in Section
3 and closely follows the approach of Bernstein and Molvig [11). In Section 4, we consider
the quasilinear diffusion tensor D] in more detail; an explicit form for D} is derived for
cases when the RF field can be described by geometric optics.

2. GUIDING CENTER ORBITS

Following Littlejohn [13], we begin with the the relativistic phase space Lagrangian
for charged particle motion in an electromagnetic field,

L(ryu b 0,8) = [S AW Y +u] F - Hrnt) 3)

where e is the charge, m is the rest mass, H = ¢?y + e®(r,t)/m, and v = (1 + u?/c?)1/2,
The Euler-Lagrange equations are applied to (3), with r and u varied independently. This
gives ¥ = u/y, and ma = e(E + u x B/7), so that mu is the relativistic momentum.
We assume a stationary equilibrium; A = Ao(r) and & = Po(r). The inductive electric
field and the RF fields are considered to be perturbations and are treated in the following
section.

Let b(r) denote the unit vector along the equilibrium magnetic field Bo(r), and let
e;(r) and e;(r) denote an arbitrary pair of perpendicular unit vectors, satisfying e; X ez =
b. We decompose u into parallel and perpendicular components and introduce Y as the
gyro-angle:

’ u=u||b+u_|_axb

(4)

a = e;(r)cosd — ex(r)sin?

Because the scale length of the equilibrium is longicompa,red to the gyroradius,wtggkgjg—

e,

“petic moment is an adiabatic invariant. 1o obtain this invariance, one transforms to a new
phase space coordinate system (guiding center coordinates), where the La tanis inde-
pendent of the gyrophase. The guiding center coordinates are denoted z = (x,U},UL,¢)
and are related to (r,u|,uL,?) as follows:

X =T— e -{-,/"Oez\>
eBo(r) i¥'/

Up=u+0e - (5)
Uiy =uy +Oe
£ =19+ 0

Although all quantities have physical units, we have introduced e to signify. the ratio of
the gyroradius to the scale length of the equilibrium magnetic field, so that it formally
indicates the order of various terms in the guiding center expansion (physical equations
are obtained by setting € to unity). Higher order terms in the transformation (r,u) > z
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have been given by Littlejg,bmg_w[1;3,]wa.nd_a.re«no.t,nggg§wdm here. Transforming (3) into guiding
<enter coordinates, one obtains the new Lagrangian (12,13],

L(z,3,t) = —A" %+ —ME-Hy (6)
€M €
where

Ho = ¢y + —®o(X) | ©)

o UL
= 2Bo(x) (8)

. em

A* = Ag(x) + —Ujb(x) (9)

and 7, = [1 + (U} + U?)/3]1/?. The Lagrangian is independent of &, so that M (the
magnetic moment) is a constant of motion. In stationary fields Hy is also a constamt of

motion and it is convenient to take z = (x, M, Ho, €) as phase space coordinates in (6). In’
this case U) is treated as the following function of z: '

Uy = o ([Ho - S Bo(x)/e* - ¢ - 2MBo(x))” L (10)

where ¢ = +1. Application of the Euler-Lagrange equations to (6) yeilds the following

equations of motion: 3 PN
‘AH iy It .o
- (/ So

. eBy "% —
_ e 11
3 e gt 72} 91{}. (11)
i = 1B (12)
79B‘ M b ’

where B* = V x A*. Upon expanding (12) in powers of € and neglecting terms of order €2,
one obtains x = Ujb/v, + €vq1, where v, is the usual exp ession for the perpendicular
(relativistic) guiding center drift [14].7 Movey toro Cudfpuoas

We assume an axisymmetric equilibrium and express the magnetic field as

 Bo=g¢($)Vé+ Ve x Ve , (13)

where 271 is the poloidal flux and ¢ is the toroidal angle. Since the toroidal component of
' A, may be written as ¥ V¢, one finds [from (6)] the following expression for the toroidal
angular momentum: o

z@w A IR
A ¥

S TEm(14)

TN

£
RN L

Py = e—;;tﬁ(x) + Uy éﬁ’(ﬂ) /{-

e

Axisymmetry implies that py is also a cherturbed motion. It is convenient
to define a quantity $(M, Ho,ps) that(approximated the instantancous value of ¢ along

t&gﬂgg;gmg center orbit. We define % ixﬁﬁﬁéfﬁy by the relation

$= Ty — O(M, Ho, ¥)] (15)
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where C(M, Hy,) is chosen so that ¥ has the desired property. Substituting (14) into
(15), one finds

$ = $(x) + —Ag(x, M, Hy) (e
8= COt D) L = ap)
=B % - Wy 3wl

| . . , EJ % = w2
We chose C(M, Ho, %) by requiring A — 0 as Bo(x) — By(), which defines fhe cylin: iy
‘drical limit. (An appropriate choice for C is given in Appendix A.) As discussed in the or Lt
introduction, the Fokker-Planck equation is represénted in a constant of motion space (et
denoted by the vector I; we now take [; = M, I, = Hy, ane I3 = 3. -

3. DERIVATION OF THE F OKKER-PLANCK EQUATION 2 - 74
X qu.( 3)

In RF current drive, the electron distribgtiop function f(u,r,t) is assumed to obey a

kinetic equation of the form B Wwfpé*f SO ,
/
d vy ad -
(Fof+5: T(H=0 , (18)
where
d 0 u 9 e, ,u 0
(Ez)o=5t—+:;~b—; ';n-(;XBo—Véo)-b‘; . (19)
The flux I'(f) can be decomposed as follows:
I(f) = —Eresf +Tu(f) + To(f) (20)

where Er is the toroidal electric field induced by the ohmic transformer, Iy is the quasi-
~ linear flux induced by the RF field, and I, is the collisional flux. The operator (d/dt),

is the total time derivative along the unperturbed orbits in the equilibrium field. The
- quasilinear flux has the form

Ta(f) = {—(B+uxB/7f} , (21)

where E and B are the RF fields and f is the fluctuating distribution function, which
obeys the linearized Vlasov equation,

(Goi=-S@ruxBm. 2 . (22)

The curely brackets in (21) denote an ensemble average, or coa.rse-gfaining, which annihi-
lates quantities that are linear in the fluctuating fields (it will be more clearly defined in
the proceeding section). The collisional flux can be written in the form

Le(f) =[F =D ==f (23)
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where appropriate semi-relativistic forms for the friction vector F¢ and the collisional
diffusion tensor D" have been given by Karney and Fisch [15] and fully relativistic forms
have been considered by Braams and Karney [16]. In general, F¥ and DY also depend
on f and the collisional flux is non-linear.

We now consider a phase space transformation from (u,r) to action-angle coordinates
(J,©). The three actions are denoted as J and the canonically conjugate angle variables
are denoted as ©. (The details of this transformation are given in the Appendix B.) In
the unperturbed motion, the actions are constant and each canonical angle ©; rotates
at a constant frequency 2;(J). In particular, Q, is the bounce-averaged gyrofrequency,
2, is the bounce (transit) frequency of a trapped (circulating) particle, and Q; is the
bounce-averaged toroidal rotation frequency, which for trapped particles is equivalent to
the toroidal drift frequency. Transforming (18) into action-angle coordinates:, one obtains

(30 + Dl = (R 1) - 2Py (24

The left side of (24) is the operator (d/dt), represented in action-angle coordintes; the right
side is the divergence of I in (J, ©) space, since the Jacobian in action-angle coordinates_
is unity. The angle-average of an arbitrary function, Y(J,0,1), is defined as

(Y) = @1—)-3» / $OY(I,0,1) | (25)

Noting that f(J,®,t) must be periodic in the angles, we angle-average (24) to obtain

5 fo= -5:']"7(';9-1; -T(f)) (26)

where fo = (f). When the difference between f and f, is small (owing to the fast rotation.

of the angles), we may take f ~ fo in evaluating T(f) on the right side of (26), which is
@Egi;??educed to a Fokkg;:;E«Lawgglc;wemqﬁggjjnggmjﬁgw%@gg space alone. This approximation is
valid when the bounce (transit) time is much smaller than the characteristic quasilinear-
collisional relaxation time. To complete the derivation of (1), we transform (26) from J
- space to I space, where the Jacobian is J(I) (such that d3J = J d*I). We thus obtain (1),

where the collisional Fokker-Planck coefficients are now given by

. S ———_
. olI; oI;
{ DY = (=i .puu, 1
S; Dc ( au Dc au ) (27)
s‘;[ N — aI, u
L—M'Fc - (au Fc) (28)

F Fi = (%ETE-} eg) . . (29)
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The remaining contributions to (1) come from the quasi-linear flux and will be treated in
the pm‘céémsection. From the definitions of J and I, the Jacobian J is easily found to

_ n(I) em 9C(T)
‘7 - .57;”[14- € 6I3 ] ’

where 7 is the bounce (transit) time for trapped (circulating) orbits. [Note, the Jacobian
J diverges logarythmically (like 73) at the trapped-passing boundary. Because the energy
is used as a coordinate in I space, the inverse transformation I — J is multi-valued. To -
resolve this, one must retain the value of ¢ for circulating orbits.]

To calculate the Fokker-Planck coefficients, we need expressions for 8I;(u,r)/du. Re-
calling that I = M, I, = Hy, and I3 = 1, one finds the following: :

(30)

-

o1,
-a'—l-l-—bX(UXb)/Bo-l-OE (31)
oI,

T =/ (%)

O, em OAY O, OAY I, ~bx vy 2

Bu- ¢\ oL gu oL ou B, ) TO¢ - (33)

The first two relations above follow directly from the definitions of the magnetic moment
and the energy. The third relation follows from the expression for % given in (16), where
we must be careful to calculate 9¢(x)/0u at fixed r (not x) in order to obtain the third
term on the right side of (33). The terms involving A% in (33) give rise to neoclassical
transport (recall that Ay vannishes when By is uniform on a flux surface); these terms

ress the fact that in toroidal geometry, ¥ shifts in responce to local scattering events
1 a particle’s energy and pitch-angle. The remaining term in (33) gives rise to classical
ansport and survives in the limit of uniform B,. In calculating the collisional Fokker-
lanck coefficients, one may ignore the classical contribution to (33), since the neoclassical
ms are dominant. (Note, this is not necessarily true for the quasilinear contributions,
ce the Fokker-Planck coefficients depend on the stucture of the RF fields.) Taking note
the definition of A(x, M, Hy) in (17), we find the following relations:

o, ~ U~ oM (34)
o8Y g7, ac
3L, = B,Uy ~ 0H, ° (35)

ich determine the neoclassical contributions in (33).

It is convenient to have a representation of the angle average directly in guiding center

rdinates (i.e. without reference to the action-angle coordinates). From the definitions
e angles (as given in the Appendix B), it is easily shown that

(V) = 71 }{ dt' Yo[x(t'), M, Ho, 1]
| (36)
Y% = (2r)? f dbde ¥ (x, M, Ho, £, 1)
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where the t' integration follows the unperturbed guiding center orbit for one complete
bounce (transit) cycle. [Note, any explicit time dependence of Yj is held fixed in the ¢/
integration of (36).]. Operating on axisymmetric, gyrophase invariant functions, the angle
average is equivalent to a bounce-average. In practice, the following simplifications may

~be made in ¢alculating the bounce-average, Consider x to be a function of the coordinates
(¥,6,¢), where 8 is the poloidal angle. Ignoring the perpendicular drift of the guiding

Fro

hLara

sl

center, the ¢’ integration in (36) is converted into 8 integration, according to the relation %/**

d8/dt' = (Uy/~4)b - V8. The bounce-time is thus
dé v,

" rUb-ve

where the usual care must be taken in handeling the limits of the 8 integration for trapped

orbits. To the same order of accuracy we may take ¥ = % in the integrands of both (36)
and (37). Similarly, we may neglect the order € term in (30), so that 7 = 7, /2x.

4. THE QUASILINEAR DIFFUSION TENSOR

The qﬁasilinear flux in (21) depends on the perturbed distribution function f, which

can be obtained from the linearized Vlasov equation (22) by the usual method of char-

acteristics (note that f is replaced by fo in the driving term). One then finds that the
quasi-linear contribution to (1) can be expressed in terms of the diffusion tensor

D = [ dr (Tt m 0 ua(roro(r) ¢ =71)) (38)
e iz S(B4uxB/y) 2L (39)
i=n v ou

and uo(7),ro(7) is the backward going unperturbed orbit satisfying uo(0) = u, ro(0)=r.

.Since I; is conserved along the unperturbed orbit, it follows from (39) that dI;/dt = Vi.
Hence, (38) is just the expected relation between the diffusion tensor and the Lagrangian
auto-correlation function. _

Rather than calculating V; from (39), we find expressions for V: directly in guiding
center coordinates, which is convenient for performing the orbit integration and the angle-
average required by (38). For simplicity, we first assume electrostatic fluctuations and
later gerneralize to treat the case of electromagnetic fluctuations. In the electrostatic case,
the RF fields are easily included in the guiding center Lagrangian (6) by adding ed/m to

(37)

the Hamiltonian, where & is the electrostatic potential of the waves. Using the modified

Lagrangian and noting the relation V; = dI;/dt, as well as the definitions I; = M, I, = Hy,
and I; = 9, the following equations are obtained:

~ a ~
Vi = ---;n (@) (40)
7= 2 Az, — ()8 a1
2= ot (Z, ) - (EZ)O ( )
_~_em3Az/;~ OAY bx VY, 8 4
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where H(z,t) = e®[r(z),t]/m. In writing (41), we have neglected terms that are nonlinear
in the wave amplitude and in obtaining (42), we have neglected terms of order 2. The
terms involving A% in (42) are neoclassical; the remaining term is the local (radial) guiding
center drift induced by the fluctuating fields and it survives in the cylindrical limit.

To treat the fully electromagnetic case, we absorb the wave vector potential A into
the perturbed Hamiltonian by redefining phase space coordinates,

u=u+ -%A(r, t) , (43)

s0 tha.t the total Hamiltonian [see (3)] can be written as H = c2vy' + e®o(r)/m + H, where
= [1+ (u'/c)’]'/? and

=&(r,t) + (v —7) o
. (44)
S C ORI CORNYY

The second expression for H is obtained by linearizing with respect to the wave amplitude.
Following Littlejohn [13], the guiding center transformation is now implemented with re-
pect to u’ instead of u, so that the guiding center Lagrangian takes on the same form as in
(6), but including H as the perturbed Hamiltonian. Since the definition of the coordinates

- now include the perturbed fields, one must be careful to distinguish between I;(u,r) and

. the related quantity I! = I;(w',r). Defining V/ = dI!/dt, one finds that V is related to H,
by equations which are of the same form as (40) (42). The diffusion tensor, however, has
een defined with respect to V;. To first order in the wave amplitude, one finds that

7= - 2 4y,4. %% |
Vi=Vi-=(5)k 52 . )

The second term in the above expression does not contribute to the quasilinear diffusion
nsor, because the T integration in (38) forces all contributions to be evaluated in the
nant limit, where (d/dt)o — 0. Thus, when calculating D} we may use (40)-(42) di-

tly, where H is given by (44). [Notice, that the same a.rgument concerning the resonance
dition allows one to ignore the term (d/dt)oH in (41).]

In RF heating and current drive, the waves are driven by an external source at fre-
ency w, so we write the RF electric field as

E(r,t) = E(r)e'\i”‘ +c.c. . (46)

verturbed Hamiltonian in (44) can be written in terms of the wave electric field by
the gauge condition & = 0. Expressing H in guiding center coordinates and
g terms of order ¢, one finds

—twt

Uyb +Usaxb)- E(x + pa) +cec. , (47)
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where p = mU, /eBo(x) and the unit vectors are now evaluated at the guiding center.
Since the perpendicular scale length of the waves can be much shorter than the scale
length of the equilibrium field, we retain the finite gyroradius term in evaluating the wave
feld. We stress that in calculating the partial derivatives in (40)-(42), the independent
variables of H are (x, M, Hy,¢,1). '

We now consider the quasilinear diffusion tensor for cases when the wave field can be
described by geometric optics. We thus assume an eikonal form,

E(r) = ) E.(r)expiSi(r) , | (48)

where E,(r) and k,(r) are assumed to be slowly varying (note, k, = VS,), and the
subscript s refers to the sth ray in the wave packet. In evaluating E(x + pa), we ignore
terms of order p/L, where L is the lengthscale of the slow variations (we take p/L to be -
of order €). Supressing the subscript s, we decompose the wavevector into parallel and
perpendicular components and we define the angle ¢ by the relation a -k = k sin( + ®)-
Starting from (47), it is now straight forward to express the perturbed Hamiltonian in the
following form (as given by Littlejohn [13]):

I?:Z i H,,.(x,M,Ho)expi[S,(x)+n(§+<p,)-—wt] +cc (49)

where E, (x) 7
_ LX) Rint L il'b x k
e = [U"J,.b +Uy( k‘kaJ_ +iJibx k)] . (50)

Here J, is the order n Bessel function with argument kyp and J}, is its derivative with
respect to argument. Also k. =bx(kxb)/kL. ‘

The quasilinear diffusion tensor is calculated according to (38), where the functions
V: are expressed in (40)-(42) and the perturbed Hamiltonian is expressed in (49). The
exact result is quite complicated, because both the slow and fast variations are included
in the T integration along the unperturbed orbit. The situation simplifies if Xo(7) can
be replaced by x in all slowly varying quantities. Assuming the integrand in (38) falls
off rapidly for T > Tac, we may make the above replacement when |Xo(7ac) — x| < L.
Since the integrand in (38) is quadratic in H, it contains terms of the form H,nH} ., (and
HynHgip), which are then summed over all indices n and n', aswell as over all rays s
and s'. These terms are subject to both an ensemble-averaging and an angle-averaging,
where the later is carried out according to the prescription given in (36). The ensemble
average is now defined as a coarse-graining in time and space (at the time scale of a wave
period and the length scale of several wavelengths). The time average removes terms which
oscillate at 2w and the coarse-graining in space tends to reduce the double sum over rays
to terms with s = s'. The angle-averaging includes an average over the gyrophase, which
reduces n' to n. The remaining slow variations are then averaged over the bounce-orbit
according to (36). Making the above simplifications results in the following expression for
the quasilinear diffusion tensor:
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D;i(I) = (Dii(x, M, Hy)) , (51)
D;{ = z Z a:na‘jananlsz ) (52)

- where the vector a;,, has three components, al, = n(e/em), a2, = w, and

s _€emOAY | AP , bx Vi, |
Agn = e [aIl aan+ 61-2 aan+( BO ) kO] * (53)

‘In (52) we have also introduced R,, as the resonance function,

R,n = /:0 dr expifwr —k, - Ax(1) — nAE(T)] +cc. (54)

vhere AX(7T) = X — Xo(7) and A{(r) = £ — §o(7). Assuming that 7,c < 73, We may
ake Ax(7) &~ Tv, and A{(7) ~ T9,., where vy =Uyb/v, + evy; and Q.. = eBy/m~,.
bstituting these approximations into (54), one obtains the local resonance condition

Ryn =2m6(w —k, - vy —nQ..) . (55)

Note, in the usual RF heating and current drive schemes, the perpendicular drift velocity
akes a negligible modification to the local resonance condition. The validity of the above
nalysis can be confirmed by calculating

Tac ™~ (Z lHanlzRan)/(Z lHanP) (56)

check that 7o < 7. It is worthwhile pointing out that in the case of cyclotron heat-
R,n must be modified for trapped particles whose banana tips are in the cyclotron
sonance layer [17].

- The quasilinear diffusion tensor in (51) appears as the bounce-average of a local diffu-
tensor, D;’,(x, M, Hy), which can be evaluated with the aid of conventional ray tracing
iques, as carried out in Ref.[10] for LHCD. The local diffusion tensor includes both
sical and neoclassical drifts, as given by the expression for o}, in (53). Examining

S
1is expression, one finds that the classical drifts can dominate when k, develops a large

oidal component, as can occur because of toroidal effects on the ray propagation during
ultipass absorption. Since a3, is of order ¢ relative to o, and o2, the diffusion takes

ace mostly in the (M, Hy) plane, at fixed . In the limit ad, — 0, the local diffusion
or given by (52) is equivalent to the usual expression for velocity space diffusion in a
lly uniform magnetic field (see Appendix C). '

We note that an alternative proceedure for calculating the quasilinear diffusion tensor
to use the action-angle representation in (38). Upon making the replacement V; —
1H(J,©,t)/00; in (38), one obtains the conventional expression for the diffusion tensor

action space [18], which takes on an especially simple form if we write H as a Fourier




series with respect to the angle coordinates. In this case, the complexity is hidden in the
calculation of the Fourier coefficients.
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APPENDIX A

Here we discuss an appropriate choice for the quantity C(M, Hy, ), which determines
our definition of $. Consider the unperturbed guiding center orbit x(t) as it passes through
the point X, where the equilibrium magnetic field takes on its minimum value; we define
¥ = $(X). Thus ¥ is the poloidal flux function evaluated at the outer most point along
the bounce orbit. .From (16) and (17), we find that the above definition of corresponds

i

to the following choice for C(M, Hy,9):

C(M,Ho,$)=5],é% , (A1)

where By(1) is the minimum value of By on any flux surface ¥ and

Uy =3a[HZ/c? ~c? 2M By ()]/* . (A.2)

(For simplicity, we have assumed ®o = 0 in the above relation for I7|,.) Here G is the
value of o at x(t) = %. For circulating electrons & = ¢ = +1. All trapped electrons
share the same Valiie 6f &, with inner and outer banana orbits being distinguished by small _

4

differences in the value of ¥.It'is wot thiwhile pointing out. that a reasonable alternative

~—"définition for ¥ is the botiice-averaged flux surface, (1(x)), which corresponds to the choice

C = {U)9($)/ By (x)). Usi;z‘?ﬁ?gmdgﬁﬁifi&ﬁ""hd"v\"rever, may cause numerical problems in the
vicinity of the trapped-passing boundary due to the divergence of 8C/OM and 0C/0H,,
which appear in (34) and (35).

APPENDIX B

Here we consider the construction of action-angle coordinates (J,®). The action-
‘angle coordinates are obtained by a sequence of transformations, (u,r) — (z) = (1,0),
where the guiding center coordinates (z) are introduced as an intermediate step, to remove
the gyrophase dependence in the Lagrangian, according to the discussion of Section 2. To
put the guiding center Lagrangian into canonical form, one constructs a set of toroidal
coordinates, which allow the following representation of the magnetic field: '

By = ByVi(y + ByV(s (B.1)
Ay = A¢VC¢ + A9V (Bz)
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where (9 and (4 are generalized poloidal and toroidal angles. In the (%, {s,Cs) coordinates,
the magnetic field has no covariant component in the V4 direction, as is evident in (B.1).
A general procedure for constructing toroidal coordinates with this property has been given
by Meiss and Hazeltine [19] and the details are not needed here. Substituting (B.1) and
(B.2) into (6), one finds that

L =pyCs+pelo +pe€ — Hy (B.3)

where p¢ = emM /e and the momenta conjugate to {4 and (s are

Po = o As) + Uy 2200 (B.4)
Po = ;-;—;AO(X) + 0 g:gz; (35) _

Noting that Ay = 1 and By = g(1), one recovers the expression for py in (14).

The actions are defined in terms of the canonical momenta. We adopt the convention
J1 = p¢ and J3 = py. The action J, is defined so that 2mJ; is the area in the (pg, 5) plane_
enclosed by a curve of constant Hy, py, and pe. (Note, for circulating orbits it is the area
beneath this curve.) Thus I, is written as '

I = (2m)™ f dCo po(Co; Horparpe) 5 (B.6)

where the integration in (s is over one complete bounce cycle. Through (B.6), the un-
perturbed Hamiltonian can be expressed in the form Hy(J )- The canonical angles are
obtained from the mixed variable generating function [20], :

Co
G(Cs,¢4,€,3) = / dCo pe($e, ) + i€ + Jalys (B.7)

by differentiating with respect to the actions,
oG

@,‘ = —6-7: (B.S)
The unperturbed frequencies are
. OH, _
©;= 57, = 2:3) . (B.9)

The difference between the above treatment and the one originally given by Kaufman
(18], is contained in our expression for ps. We see from (B.5) that py includes a term
proportional to By, which properly accounts for the effect of the poloidal magnetic field on
the guiding center drift.
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APPENDIX C

We now show that ﬁ;{ in (52) corresponds to the usual quasilinear velocity spac

. diffusion in a locally uniform magnetic field. First note that ’D;{ depends on |H,p|?, wher
H,, is defined in (50). Defining the complex unit vectors

e+=(1‘{‘L—ile‘(J_)/\/§ (C.l
e. = (f(_]_ +ib X f‘.L)/\/§ (€2
one finds that
E,
Hon = — it - g Jub 4 us(esops + e Jn) V2 (¢3

where we have let Uy — u), UL — u1 and 7, — 17, as is appropriate in the limit of uniforr
magnetic field. If one now lets I; — u? /2By and I; — c*v, one finds that the quasilinea
diffusion equation in (u_,u)) space has the following form:

0
E;-fo(ul’ Rl E t) = Z ; GanDJnLanfO(u.La Uyl t) 9 (04

where 2 2
D, = 216(w — uyky — n€ee) o | Hyn |? C.t
m - 21I’ (w ‘uu " n ce) ui ‘ ’nl ( o

and we have defined the operators

: 1 0 .' nc. 9 kjur
Gon _Hau_L uL( w ) 611"( wy ) (C€
_ nQe. 0 k||u_|_ 0 -
Lan = ( w )3u_,_+( wy )au“ (€.

Note, that in obtaining (C.4) we have ignored the perpendicular guiding center drift b
letting a3, — 0 in (52). Equation (C.4) is the relativistic generlization of the velocit
space quasilinear diffusion equation obtained by Kennel and Engelmann [21]. The nor
relativistic limit is taken by letting ¥ — 1 and replacing u; and u) with the ordinar
perpendicular and parallel velocities.
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