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7R35 Fokker-Planck Simulations of Parallel Electron Trans-
port in the Scrape-Off Layer,* K. Kupfer,! R.W. Harvey, O.
Sauter,I G.M. Staebler, General Atomics — Electron transport in the
diverted scrape-off layer of a tokamak is studied using a 3D Fokker-
Planck code (FPET) with two dimensions in velocity spaée and one
spatial dimension along the magnetic field line. This provides a
fully kinetic treatment of the electron distribution function, neces-
sary because the mean free path of energetic electrons is long with
respect to the length of the field line. The electrostatic potential is
calculated self-consistently, including a jump condition at the plasma-
sheath interface. The ions are taken to be a fixed fluid background.
In the long mean free path regime, the parallel electron heat flux
istoften prescribed by a simple local formula combining the classical
conductive heat flux and a free-streaming flux limit [1]. A comparison
is made between our Fokker-Planck results and various local and
non-local fluid models for the parallel electron heat flux, including
the flux-limiting condition.
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" FOKKER-PLANCK EDGE TRANSPORT CODE (FPET)

o Electrons in the diverted scrape-off layer of a tokamak are
typically in a mixed collisionality regime

— bulk electrons are moderately collisional,

— tail electrons are nearly collisionless.

e Kinetic effects play an important role in the parallel trans-
port of heat and in determining the electric field, which ef-
focts the ion flow rate and impact energy on the divertor
plate.

o Non-Maxwellian distortions of the electron distribution func-
tion effect the power radiated by impurities.

e FPET is a fully kinetic parallel transport code which
solves for f(vi,v),%), the gyro-averaged distribution func-
tion along a magnetic field line. Presently, we solve for
the electron distribution function assuming a fixed ion back-
ground.

e FPET calculates the self-consistent electric field.



RESULTS

e FPET recovers classical transport results in the short mean
free path regime.

e For large temperature gradients, FPET calculations of the
electron heat flux agree with previously published results [2].
The departure from classical transport theory (due to finite
mean free path effects) appears in both the heat flux and
the electric field.

e For typical SOL conditions in a DIII-D H-mode plasma, we
have used FPET to calculate (i) the electron heat flux, (ii)
the self-consistent electric field in the pre-sheath, and (iii)
the self-consistent potential drop across the sheath. The cal-
culated heat flux agrees reasonably well with previous Monte
Carlo simulations [3].

CONCLUSION

Existing fluid models do not properly describe parallel trans-
port in the SOL under semi-collisionless conditions. This
includes the flux limited model.

[2] J.F. Luciani, P. Mora, J. Virmont, Phys. Rev. Lett. 51, 1664 (1983).
[3] R.H. Cohen, T.D. Rognlien, “Finite Mean-Free-Path Effects in Tokamak Scrape-Off
Layers,” Contr. Plasma Phys. (1993).



FUTURE PLANS

Main objective —

(1) Identify areas where kinetic effects play an important
role in edge physics.

(2) Develop appropriate methods for including these kinetic
effects in existing edge modeling codes.

Example — Develop a multi-parameter fit for the particle
flux and heat flux as functions of the density, temperature,
and electric field (including the sheath potential).

Upgrade the collision operator —

FPET presently implements a test particle collision opera-
tor. The linearized momentum conserving operator and the
full non-linear collision operator are being extracted from

the CQL3D code.

Develop a reduced 2D fluid/kinetic model —

One attempts to replace the perpendicular velocity depen-
dence in the 3D kinetic equation by an appropriate moment
expansion, producing a hybrid 2D fluid /kinetic approach.

Preliminary results have been achieved by taking the distri-
bution function to be Maxwellian (at the background tem-
perature) with respect to perpendicular velocity.



Couple ions and electrons —

FPET presently assumes a fixed ion background. We plan
to treat the ion dynamics in a self-consistent fashion, either
as a fluid, or as a second kinetic species.

Include cross-field transport —

The simplest approach is to treat cross-field transport effects
as a distributed source/sink of particles along a single field
line.

A more complete approach is to add cross-field transport
terms directly to the kinetic equation, extending the con-
figuration space from one to two dimensions. The required
computer time scales roughly linearly with the total number
of grid points in configuration space.

This problem is ideal for parallel processing, since most of
the CPU time is spent inverting a 2D velocity space operator,
which can be done simultaneously at all spatial grid points.

A more practical approach may be to incorporate cross-field
transport as an extension of the 2D fluid/kinetic model (dis-
cussed above).



3D Kinetic Equation

— t v+ E”—_I—) fe = C(f.) + sources

Collision Operator

(1) Test particle operator.
(2) Linearized momentum conserving operator.
(3) Full non-linear integral operator.

Electric Field

(1) Poisson’s equation

%)En - é(nz — Zi/d‘o’v fe)

(2) Quasi-neutrality (flux constraint)

/d3v v|| fe = constant



Numerical Method

Define configuration space and velocity space operators:

A(f) = (vnga;)f

B(E“,f) = (E”aiv”)f - C(f)

Use ADI method to time step the kinetic equation:
Step 1

(f*FY2 — fM)2/At + A(S"TV?) = —B(E), ")
Step 2

(fn+1 . fn+1/2)2/At 4+ B(E”,fn—*_l) — _A(fn—i-l/Z)

Most of the CPU time is spent inverting the 2D velocity
space operator in Step 2, which involves solving a large
sparse system of linear equations.

Steady-state solutions are typically obtained in 30 to 60
time-steps, totaling about 10 thermal collision times.

Run-times on the HP 9000 T500 workstation, using a 40x50
velocity space mesh, are typically 30 minutes to 1 hour.



Solving Poisson’s Equation

The steady-state solution of Poisson’s equation is obtained
by relaxation. The distribution function is updated from f"
to f**! using the time retarded electric field, E}'.

The electric field is advanced as follows

Y(P"T = ¢") - (%>¢n+l == (n@ = L /dgv f”)

€o

where By’ = —0¢™/0z and < is a numerical parameter that
determines the relaxation rate.

The potential and the distribution function gradually adjust
to one another and to the boundary conditions.

We have used this algorithm with absorbing wall bound-
ary conditions to obtain sheath solutions for the regime
Avrp/Ap < 10. (Here Aypp is the mean free path of ther-
mal electrons and Ap is the Debye length.) To avoid numer-
ical instabilities, we typically had to set v ~ (Amrp/AD)?.

Although the stability boundaries of this algorithm need to
be quantified more carefully, it provides one possible method
for obtaining kinetic solutions in the sheath.



Imposing Quasi-Neutrality

In the pre-sheath, the self-consistent slowly varying elec-
tric field may be calculated by imposing quasi-neutrality.

The distribution function is updated from f™ to FREL2

ing the time advanced electric field, EﬁLH.

To determine Eﬁbﬂ we define the reduced (2D) distribution
function

F(U”,Z) :27T/’Z)_Ld’l]_|_ f

Setting Eﬁ”’l = H + AE) in the first ADI step and inte-

grating over perpendicular velocity yields

0
8’0” )

—27r/vldm_ B( ﬁb,fn)

(Fn+1/2 Fn)Q/At+A(Fn+1/2) 4 AE”(

Simultaneous solutions for both F™t1/2 and AE” are deter-
mined by imposing a constraint on the flux

/dv“ v“F”+1/2 = constant

Once EWH is determined, FPET calculates Frtl2 gnd fo+l

by the prescribed two-step ADI method. The flux constraint
is not imposed on the second step, i.e., when calculating f n+l
we do not re-calculate the electric field.



SOL Example Calculation

Parameters — DIII-D H-mode plasma.

Boundary Conditions —

Mid-plane: we impose a symmetry condition.

Wall: electrons with (mevﬁ /2) < eA¢g are reflected, other-
wise they are absorbed.

Source —

At the mid-plane, a half-Maxwellian distribution of electrons
is injected (moving towards the wall).

Sheath Potential —

The ions are assumed to have a flow velocity of Mach 1 at the
sheath edge. The sheath potential drop A¢sy is calculated
by balancing electron and ion currents to the wall.

FPET result: eA¢g, = 4.9T.(wall)
classical result: eAdgy = 2.8T(wall)

(Note, classical sheath theory assumes Maxwellian electrons
at the sheath edge.)



DIlI-D H-MODE EXAMPLE
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PERPENDICULAR VELOCITY

LOG(f)
é

DIII-D H-MODE EXAMPLE
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ELECTRIC FIELD (normalized)

DII1-D H-MODE EXAMPLE
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Comparison with Classical Transport Theory

Transport Relations

Electric field —
eEy = po/ne + AT, + B (me/nete) Te
Electron heat flux —

ge = —C (nete/me)Te T, + AT, T,

L syme TP _
Te = 44/27ln Ae*Z; Te and Fe—ne<v”>

Coefficients
Braginskii (Z; = 1) —

A=0.71, B=051, (C=3.16

Test particle operator (Z; = 1) —

A=110, B=1.18, (=238



Model Problem
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T.=: [(Tea +Top) + (Tea — Te) tanh(fz)]

Three cases are shown in the following figures —

L/Amrp = 500, 50, 15

In all three cases Trp = Teq/2 and the electric field is deter-

mined by imposing the zero flux condition.
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HEAT FLUX (Normalized)

ELECTRIC FIELD (Normalized)

0.08 T T — ; .
I a FPET _
0.06 - — classical -
0.04 |
0.02 |
0.00 ——_ N
-40 -20 0 20 40
DISTANCE/(MEAN FREE PATH)
0.040 . r l —]
00305_ » FPET E
: A — classical ]
o A ]
0.020F N 3
C A N
C a ]
0.010F A 3
: a ]
C A ]
C a A ]
0000E&8 21— . . . . . . -
-40 -20 0 20 40

DISTANCE/(MEAN FREE PATH)



0.30IvlvrilT']v11tllvvl'!llv‘v‘llr

0.25 -

a FPET
— classical

T

0.20

0.15

0.10

Pooowowo oo by oo o b w v o oo oa s boaas

HEAT FLUX (Normalized)

LIS INLENL S R (L L B L L |

0.05

>4
>
>

>
>

>

T

000" o oo v v o b a1
-15 -10 -5 0 5 10
DISTANCE/(MEAN FREE PATH)

'y
(3]

0.12

4
4
-

a FPET
— classical

0.10

0.08

0.06

0.04

Lo o b oo b v 4w w4y oy

0.02

ELECTRIC FIELD (Normalized)

>4
>

0.00 rellT T DR RN | MO N, (U S| LU, S SN N, T CON O OOV, SR O SO D M
-15 -10 -5 0 5 10 15
DISTANCE/(MEAN FREE PATH)




