Kinetic modeling of scrape-off layer plasmas
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Electron transport along open field lines in the diverted scrape-off layer of a tokamak is studied
numerically via a kinetic Fokker—Planck approach. The method allows calculation of the
distribution function in a situation where large parallel temperature gradients are maintained by
collisional relaxation and, at the same time, superthermal electrons stream freely from the midplane
of the plasma to the target/sheath boundary. The method also allows calculation of the
self-consistent electrostatic field associated with parallel gradients in the distribution function, as
well as the potential drop across the target/sheath boundary, where the latter is calculated to enforce
appropriate boundary conditions at the target, although the sheath itself is not resolved. The kinetic
results are compared to classical fluid results for the case of a simpheadiative divertor. The

kinetic solutions exhibit an enhanced superthermal electron population in the vicinity of the target,
which results in a larger sheath energy transmission factor, a lower bulk electron temperature, and
a smaller sheath potential drop. The sheath potential largely determines the energy with which ions
impact the target, thereby affecting the rate of target erosion. lonization rates and radiation rates
from impurities in the vicinity of the target also depend strongly on the local electron temperature
and can be sensitive to superthermal tails. 1896 American Institute of Physics.
[S1070-664X%96)03710-X

I. INTRODUCTION have a MFP roughly 80 times that of thermal patrticles, i.e.,
the MFP scales likeu/v,)* thereby allowing superthermal
Successful operation of a tokamak fusion device requireglectrons to free stream over a substantial portion of the tem-
maintaining a clean hot plasma core, while minimizing ero-perature gradient. For typical parameters in the SOL, this
sion of the divertor target. This depends critically on plasmaesults in a competition between collisions and free stream-
parameters in the scrape-off lay&OL), where a large heat jng. Bulk collisions are responsible for maintaining the tem-
flux is carried along open magnetic field lines to the diVe”Of-perature gradient, while free streaming replenishes the target
A substantial portion of this heat flux is carried by elec'[rons,region with energetic electrons from the midplane. The phys-
making electron heat conduction an important divertor phySicg of the target/sheath region determines the boundary value
ICS ISsue. of the electron temperature for a given heat flux and particle

It isiwell known t'hat para}llel electron heat transport in ag .« This boundary physics is sensitive to the influx of hot
magnetized plasma is sensitive to long mean free path effecl§a trons from the midplane of the plasma

that are outside the scope of conventional fluid theory. For
classical electron thermal conductivity to be valid, the eleC'M

tron mean free pattMFP) must be suitably small compared that the self-consistent temperature profile remains undeter-

to t.he temperature g_rad|ent scale length. the long MFP . mined. While the test-particle method seeks to characterize
regime, early numerical work showed that the conductive

N : . the relation between the heat flux and the temperature pro-
heat flux remains limited to a fraction of the free-streaming,., ~ . e .
flux n.T.w,..2 Based on heuristic arguments and numericalme’ it does so for an artificial state of the system, without
c eve F\tisfying the appropriate boundary conditions. As an alter-

solutions, researchers attempted to construct a nonloc3 . . . .
model linking the heat flux to the temperature pro?iréhis native to this method, self-consistent solutions have been ob-

line of research was later extended by more detailed analysf@ined with a multispecies particle-in-cell cotfe'? but code
of the Fokker—Planck equatidri® In all of this work, the ~Funs are expensive and have typically covered only a few
breakdown of conventional fluid theory occurs even whilecentimeters of field line in front of the target, whereas the
the MFP ofthermal electrons is short compared to the tem- région of interest typically extends for tens of meters. The
perature gradient scale length. This is because most of tHgoal of this paper is to present a set of self-consistent nu-
heat flux is carried byenergeticelectrons whose velocities Merical solutions of the electron Fokker—Planck equation,
are in the range®, [wherev = (To/m,)*?]. These particles extending along the SOL from the midplane, into the di-
vertor, and to the target/sheath boundary. To do this, we have
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Research in this area has generally relied on test-particle
onte Carlo simulation&!° The drawback of this method is
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ity, thereby allowing calculation of the self-consistent elec-sheath must be balanced, i.e., ambipolar. Furthermore, since
tric field. the Bohm sheath criterion limits the ion flow velocity to be
Classical fluid theory for a simpl@onradiative divertor ~ roughly Mach 1 at the entrance to the she@te the review
is reviewed in Sec. Il. The kinetic approach is outlined inin Ref. 15, one obtains a constraint on the electron flux. In
Sec. lll. Details of the numerical method are discussed irparticular, the electron flux through the sheath is
Sec. IV. The results, comparing kinetic and fluid solutions, _ 12
are presented in Sec. V. Conclusions are given in Sec. VI. Teo=Mneol (Teo + Tio)/ M1, @
where all plasma parameters are evaluated at the entrance to
Il. CLASSICAL FLUID APPROACH the sheath an®l is a numerical coefficient of order unity.
] ) ) Throughout this paper, we ignore the length scale of the
Here we discuss conventional fluid theory for para”elsheatr‘(both the Debye sheath, as well as the ion gyrosheath

transport in a simple divertor. In this approach, one assumegyq jnstead we impose an appropriate boundary condition at
the classical relation for parallel heat conduction together_q Assuming a Maxwellian distribution at the target/

with an appropriate target/sheath boundary condition. Thgneain boundary gives the classical result
sheath region is treated as a boundary layer wherein the dis-

tribution function is assumed to be Maxwellian. Results ob- ~ #=—IN[T'eo(27) % (Negv e0) 1, )
tained in this section will be referred to as “classical” to where g=eA® /T, is the normalized sheath potential and
distinguish them from the kinetic results obtained in subsebeO:(Teo/me)llz_ This follows from Eq.(4) by computing
quent sections. Il denotes the electron heat flux parallel to e integral

the magnetic field ané denotes the plasma thermal conduc-

tivity, then the classical relation foF, is Feo:f 270, va_J dv, v, feo, ®)
Qe=—«VTe. 1 *
T ; here f, is the electron distribution at the target/sheath
Braginskii gives «=3.16  (Ng7eTe/My) where W e = 12 :
7.=3(my) Y2T2[4(2m 2 In Ae’n.] is the electron colli- boundary,s=(2eA®y/m,)™", and all electrons withy,<s

are reflected by the sheath potential. In the same fashion, we

sion timé* andZ, is assumed to be unity. In the absence of
may also compute the electron heat flux through the sheath,

sources and sinks and neglecting any convective flux, th
steady-state solution of the heat equation requires constahf"

Je- Takingg, constant and neglecting variations inAn Eq. o Mev?

(1) is easily integrated to obtain qeozj 2 | def do, U(T) feo-

(7
S
Te=Teo(1-2/D)*", ) It is convenient to define the sheath energy transmission fac-
where z is the distance along the magnetic field line mea-tor
sured upstrean{negative from the target atz=0. Here 5=0uy/(T'aqToo) )
D= «oTeo/(3.50,), WhereT,, and «, are the electron tem- Geo/ (L e0le0):
perature and thermal conductivity evaluated at the targefDnce again, assuming a Maxwellian distribution in Eq,
sheath boundary. The classical solution thus reduces to a sete obtains the classical result
of profiles whose steepness is controlled by a single param-

5= ¢+2. 9)
eterD.
Equation(1) can be rewritten in the following form: In Eqg. (4) we assume deuterium ions wiffjo=Tg, and
M=1. Now substituting Eq(4) into Eq. (5), the classical
Ge/(NeTeve) =3.18ke /L7, @ results arep=2.8 ands=4.8.
whereL;=T,/dT/dZ ! is the gradient length of the tem- Further comment is needed on our implementation of the

perature profile, \;=7v, is the thermal MFP, and Bohm criterion[Eq. (4)] and our treatment of ions. The goal
ve=(T/me) 2 is the thermal velocity. In Ref. 8, the break- of this paper is to present a kinetic model for electrons and to
down of Eq.(1) is shown to occur fom =5.3x10 2L, compare the results of this model with classical fluid theory
where the numerical factor of 5.3 accounts for differences irin a consistent fashion. Since the ions are not treated in de-
the definition of MFP. Substituting this constraint into Eq. tail, the precise value of the coefficieht in Eq. (4) cannot
(3) givesqg./(n.Tv)=<0.17 as the valid regime for classical be determined, therefore, we takk=1, a reasonable value.
fluid theory. In Ref. 9, Monte Carlo solutions of the Fokker— It should be noted, however, that the magnetic field in a
Planck equation show the breakdown of E2).and the pres- divertor configuration generally intersects the target at an
ence of a flux limit, whereby/(n.Tove)<=Cjy, with C; a  oblique angle, modifying the sheath physics and the value of
numerical coefficient typically in the range of 0.1-0.2. M, as discussed, for example, in Refs. 16—19. Here we are
At this stage arbitrary collisionality regimes are possible,effectively compressing both the Debye sheath and the ion
since for any given temperature profile, the density can bgyrosheath into one boundary condition that requires speci-
decreased, thereby increasing the MFP until &9.is vio-  fying the electron flux to the target. Furthermore, we assume
lated. In fact, however, proper treatment of the target/sheatthat there is a strong ionization source of electrons directly in
boundary results in an additional constraint which limits thefront of the target/sheath boundary, as in the case of a high-
collisionality. Assuming that the target floats electrostati-recycling divertor. In this case, the loss of hot electrons to
cally, at steady state the electron and ion fluxes through ththe target is compensated by the birth of cold electrons in the
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ionization layer. This allows for a relatively small particle 0T
flux upstream, while maintaining a large flux through the Eoos
sheath, as necessary to satisfy the Bohm criterion. A small
convective flux is also consistent with our assumption that
the conductive heat flug, is constant. The ionization layer,
which is typically narrow compared to the temperature gra-
dient length, can be treated as part of the target/sheath
boundary condition. We assume that the particle flux is zero s
throughout the region of interest and apply H¢) as a 10F
boundary condition, thereby setting the valuel@f in Eq. L
(6). Assuming thatf ., is Maxwellian in Eq.(6), one may - MEAN FREE PATH (mfp)
calculateAd,, and, in particular, one arrives at the classical - NORMALIZED VELOCITY (v)

._\l mf

radiéht
ength |

n
o
T

LENGTH (m)

result given by Eq(5). oL ' *'
", . -30 -20 -10 0
To see how the sheath boundary condition fixes the elec- DISTANCE FROM TARGET (m)
tron collisionality, simply combine the definition af with
Eq. (4) to obtain FIG. 1. Various length scales vs distance from the target/sheath boundary.
U2 The temperature profile is calculated via the fluid model in Sec. Il, assuming
[de/(NeTeve) Jo= Sl (1+Tio/Teo) Me/m;] =< (100 the following two parameterg,=100 MW/n? andne=2x10%° m~2. The

_— - . .. . . density profile assumes constant pressure. Here the energy-dependent mean
Substituting this into Eq(3) gives the collisionality regime. free path(MFP) is defined as\,(v/ve)* and is shown for various normal-

Assuming deuterium ions witfi;o~ Ty and 6~4.8, the re-  jzed velocitiesp/v,=1.75, 2, 2.25, and 3. Electrons wittv ;=2 are within
sultis [0e/(NeTeve)19~0.1, which is marginally in the clas- one MFP of the target. The local temperature gradient lemgthis also
sical fluid regime. Furthermore, for the typical case of nearlySnown for comparison. Only the most energetic electrohs,=2.7, have a
. . . “MFP which exceeds the gradient length.

constant pressure along the field line, the quantity
g/ (N.Tev,) is largest at the target/sheath boundary, decreas-
ing like T, 1/? as one progresses upstream. Hence, the lowest
collisionality regime is directly in front of the target. 9 J 9

Specifying the density at the target/sheath boundagy 1 Ui gz B g fe=Clfe) +S, (11
and the heat fluxg,, one may use the above equations to !
determine the electron temperature, i.e., Bdf) givesT,,  whereC(f,) is the Coulomb collision operator ar®irepre-
and (2) gives the entire profile. Consider the following ex- sents any sources, or sinks. Hetgf,.) refers to the full
ample. Takingge=100 MW/n? and ng=2x10° m~3, to-  nonlinear collision operatofas in Ref. 21, gyro-averaged
gether with6=4.8, givesT,,=16 eV and an upstream tem- and with ions taken as a fixed Maxwellian. SinEgz) is
perature of T, =74 eV atz=—30 m. These parameters generally unknown, an additional equation is needed. Pos-
are representative of a DIII-D high-confinement modesible methods of determining, include solving Poisson’s
(H-mode?® in which case the midplane of the flux surface is equation, imposing quasineutrality, or prescribing some
about 30 m upstream of the divertor target. Figure 1 showslosed form relation betweef, and the moments of,.
the relevant physical length scales at various distances from  Since the precise structure of the Debye sheath is not of
the target/sheath boundary. Here the energy-dependent MFRterest here, we impose quasineutrality, together with an
is defined as\(v/ve)* and is shown for several different appropriate target/sheath boundary condition to determine
values of ¢/v,). The local gradient length is also shown  Ad,. Assuming that the electrical curreditis known, the
for comparison; as can be seen, only the most energetic elegelation
trons (v/v,=2.7) have a MFP which exceeds the gradient
length. However, the MFP can exceed the connectpn length ‘]”:f Ao e(Zif—fo), (12)
to the target, even for moderate energy electrons; for ex-

ample, electrons with/v,=2 are shown to be within a MFP : : g ——
of the target for the first 10 m; whereas electrons with>ETVes as a constraint 6g which can be satisfied by adjust

vlv=2.25 are within a MFP for the entire 30 m. It will be ::rge Ii‘gﬁ)stlgn%ﬂ glg'cg ?nedI(t)irrlr;eI:lJtE::dEth((alzl)ercégﬁiLcs:utroregt
shown in Sec. V that the electron distribution function be- P 9.

comes non-Maxwellian in the vicinity of the target, where constant flux condition offi,, thereby maintaining the initial

the MFP is comparable to the connection length, d'enS|_ty_ profile throughout the.tlme evolution of Ef1). For
simplicity, we assume thal, is zero. More generally, the

divertor target may be grounded, or biased to drive current
through the SOL, and, in addition, small eddy currents may
exist which allowJ, to vary along the field line. As discussed

The kinetic approach is to solve the Fokker—Planckin Sec. Il, we assume there is a source flux of cold electrons
equation for the electron distribution functidg(v, ,v,,2) due to ionization at the target/sheath boundary. This compen-
along the magnetic field line. Heffg is actually the gyroav- sates for the loss of electrons to the target, allowing the over-
eraged distribution functiony, andv, are the usual cylin- all particle flux to remain small. Formally constrainifigto
drical coordinates in velocity space, amdis the distance have zero particle flux determines the valueEfz) in Eq.
along the field line. The Fokker—Planck equation fgris (12).

Ill. KINETIC FOKKER-PLANCK APPROACH
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Appropriate boundary conditions must be imposed adistribution of prescribed density,, and temperatur&,,,. A
both ends of the field line. At the target/sheath boundarystandard tridiagonal system is then solved to advance Eg.
electrons withvH>(2eA<I>Sr/me)l’2 are absorbed by the tar- (13) for v,>0. Each point on thé6,v)-mesh is advanced
get, otherwise they are reflected. The value\df,, is calcu-  independently. Az=0, the outflux for,>(2eAd,{m,) % is
lated to maintain a prescribed flux of high energy electroncomputed via Eq(6). Note that Eq(6) is a relation between
to the target, as set by the Bohm criterion in Et), so as to  the sheath flut’yy, and the sheath potentialb,; in our case
be completely consistent with the classical fluid approacH’y is fixed by Eq.(4) and Adg, is calculated. To complete
outlined in Sec. Il. This flux is balanced by the source ofthe target/sheath boundary condition, the incoming particle
cold electrons of the target. At some specified location upflux for negativev;, must be specified. Since electrons with
stream from the target, the distribution function of incoming 0<vH<(2eA<DS+{me)1’2 are reflected, part of the influx is au-
electronggoing toward the targgts fixed to be Maxwellian, tomatically specified. The remaining influx is specified as
thereby setting an effective upstream temperature. Note, thgf. (for v,<0) wheref is a cold Maxwellian representing
distribution of outgoing electrons at this same location up-+the ionization source. The temperaturefgfis chosen to be
stream is not fixed, but is calculated as part of the solutioncold in comparison to the sheath temperature. The normal-
Although the upstream boundary condition appears somezation of f; is determined by requiring
what arbitrary, it still captures the relevant physics. An alter-
native method would be to solve E@.1) with target/sheath
boundary conditions applied at both ends of the field line and v fed3=—Tq,
to specify some distributed source term to account for the v)<0
influx of hot electrons from the plasma core.

thereby imposing zero net flux at the boundary. A standard

IV. NUMERICAL METHOD tridiagonal system is then solved to advance Exp) for
The kinetic equation is solved by finite difference using?i<0- ) ) ) ) )
a two-step alternating direction implicitADI) relaxation A nine-point flux-conserving difference scheme is used
scheme: to represenB(E, f ).% The finite-difference scheme actually
Nil2 en N1 A employs (6v) coordinates in velocity space, with
(f — IOIAtHA(T )+B(E"T)=0, (13 v, =v sing and v,=v cosé. The v mesh is truncated at
(FMH 1 U2 At A(FNL2) 4 B(ENTL F1F L) =0, (14) ~ Some maximum energy, large compared to the upstream tem-
perature, where an outflux boundary condition is applied,
whereA andB are operators i.e., phase space density flows freely off the edge of the grid.
9 The total number of particles lost at themesh boundary is
A(f )=<v| E)f’ typically negligible, verifying that mesh truncation does not

effect the integrity of the solution.
3 The termB(E"*%,f"*1) in Eq. (14) includes two types
B(E.f ):(E a—vl)f—C(f ), of nonlinearities. The collision operator is nonlinear, since
) ) ~_ the Fokker—Planck coefficients for electron—electron colli-
and the subscripts oy, andE, have been omitted to simplify  gjons depend on integrals over the unknown distribution
the notation. Note thaft is the time increment for €ach ¢nction. Within the context of our ADI relaxation scheme,
half-step, i.e., fon—n+1/2 andn+1/2—n+1. The opera-  xis is handled by making the replacemdft®—f"* %2 in
tor A represents convection along the magnetic field lineg gych collision integrals. A second nonlinearity enters
while the operatoB represents velocity space flows due t0 4,,gh the electric field term, involving the product of two

collisions and the electric field. unknownsE"*! andf"*1, where the additional equation for
The z mesh extends from some upstream boundary agn+1 i5xes the form of an integral constraint dfi*?

z=z, to the target/sheath boundaryzat0. A fully centered namely
flux-conserving difference scheme is used to repreaéht).

Boundary conditions at both ends of tlzemesh require

specification of the incoming particle fluxes. atz,, the f 1 By—0
influx for v,>0 is fixed to bevf,, wheref , is a Maxwellian Ui ve

TABLE |. Comparison of results from threepeT runs: T, is the temperaturén eV) of the incoming Maxwellian at the upstream boundaFy; is the
temperature at the target/sheath boundary, dRg){ is the corresponding sheath temperature calculated from classical fluid theory, as discussed in the text.
The sheath potentiad®y;, is given in eV. The following normalized parameters are also shapreA® ¢ Teo, 6=0eo/ (T'eoTe0)s Go=deo/ (NeoVe0Teo)

Qu=0ed/ (NeweuTew, andAg/L, wherel,, is the thermal MFP evaluated at the upstream boundary,Laigithe connection length to the target. For
comparison, the classical values ¢fand 6 are approximately 2.8 and 4.8, respectively, in all three cases.

Run Teu TeO (Teo)f AcI)sh d’ S o Au )\EL/L

1 74 11 14 35 3.2 6.1 0.17 0.038 0.052

2 108 18 30 61 34 8.2 0.22 0.069 0.107

3 140 28 53 104 3.7 9.4 0.24 0.098 0.178
Phys. Plasmas, Vol. 3, No. 10, October 1996 Kupfer et al. 3647
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FIG. 3. Time evolution ofPeTrun 1 showing(a temperature at sheaih,,
(b) energy transmission factai, and(c) normalized sheath potentid, as
functions of time. The time is specified in code units, defined as the length
of the field line(30 m) divided by the maximum velocity mesh poifep-

FIG. 2. Results ofPeTrun 1 showinga) the temperature profile ar{d) the
parallel heat fluxMW/m?). In (a) the kinetic solution fromepET is com-
pared to conventional fluid theorfglashed ling for the same heat flux. At
the upstream boundary, the kinefig profile diverges somewhat from the A 1
fluid profile; this is an artifact of the numerical boundary condition, which Proximately 4Te,/me) %,

imposes a Maxwellian distribution for incoming electrons. The triangles in
-1
f dBU U|h) f dsl) U|g) .

(b) show mesh points of the numerical simulation. Note, that the heat flux
incident to the surface of the targetq'@H sin @, wheree is the small grazing
angle of the field line with respect to the target. ENtl=—En—
There are two alternatives for updating the distribution func-
tion; we can either accept the solution of the linearized equa-
tion, i.e.,h+gAE, or we can recompute the solution of Eq.
(14) using the above value fdE"*!. Since the later algo-
rithm is stable for arbitranAt, it generally justifies the ad-
(fPH1—fnti2) N ditional computation required on each time step.
AL +B(E" ") It is important to point out that each grid point on the
mesh is advanced independently in Etd), allowing large
gains in overall speed to be obtained through parallel pro-
cessing. The two-dimensional velocity space step #d)
takes much more computation than the one-dimensional con-
where AE=E""*—E". Upon settingf""*=h+gAE, one figuration space step E4L3). In a CRAY T3D parallel pro-
obtains independent equations forandg cessing implementation of the code, we solve Elf) on
h/At+B(E" h)= " V2 At— A(fT+12). separate processors for each space point. The space equ_ation,
Eqg. (13), is solved across processors. For 30 space points
9 (and 64v points, 326 points the code is executed in 750 s
—+B(E",9)= —(— fnri2, using 8 processors, and 240 s using 32 processors. Thus, as
At 0"1)” .
the number of processors was increased by a factor of 4,
Notice that the these equations involve the same operator dRere was a factor of 3.1 overall speedup. Limits on speedup
the left-hand side. Within the context of our finite difference are yet to be explored.
scheme, this operator is represented as a banded matrix and
factored or;ge to_ compute both and g. The SLATEC V. COMPARISON OF KINETIC AND ELUID
(LINPACK)“® routinessBccoand scBswere used to factor SOLUTIONS
the band matrix by Gaussian elimination and solve the linear
system of equations. The updated electric field is then deter- To compare kinetic solutions with classical fluid solu-
mined as tions, we chose a set of threeeTruns: each run documents

(Note, the constraint must be applied at eaemesh point
along the magnetic field lineThe solution is obtained by
linearizing Eq.(14) as follows:

Jd
= n+1/2y _ __ | §n+12
A(f ) AE(&U)f \

g
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FIG. 4. Results ofPETTUN 2 showing(a) the temperature profile art) the ~ FIG. 5. Time evolution ofpeTrun 2 showinga) temperature at shealh,
parallel heat fluxMW/m?). In (a) the kinetic solution fronFreTis com-  (b) energy transmission factai, and(c) normalized sheath potentig, as
pared to conventional fluid theokgashed lingfor the same heat flux. The funct|ons of time. The time is specified in _code un|ts,_def|ned as t'he length
triangles in(b) show mesh points of the numerical simulation. of the field line(30 m) divided by the maximum velocity mesh poifap-

proximately 4{Te,/me)Y?].

an increasing departure from classical fluid theory. In alldiscretization errors involving the collision operator, as will
three runs, the density profile was taken to be be discussed in more detail below. Figure 3 shows the time
o (15) evolution of the temperaturéand other_paramet_e)rsat the
sheath edge. The system relaxes quickly at first and then
with ng=2x10°° m™® and @=9.284 m*, to give an up- gradually approaches a true steady stictuations of the
stream density ofi,,=4x10'° m~® atz,=—30 m. The elec- normalized sheath potential visible in FigicBare artifacts
tric field was calculated to give zero particle flux, therebyof the relaxation scheme. These fluctuations are so small,
maintaining the density profile. The temperature of the colthote the scale of Fig.(8), as to be insignificantAlso shown
Maxwellian particle source at the target/sheath boundary waig Fig. 2(a) is the fluid temperature profile calculated for the
taken to be 3 eV in all three runs. Upstream, the incomingsame parameters. This is done by integrating(Exnumeri-
distribution function was taken to be a Maxwellian with den- cally using theq, profile determined bypeT, i.e., as shown
sity ne, and temperatur&,,,. The upstream temperature was in Fig. 2(b). (The variation of the Coulomb logarithm is also
increased in each of the three runs, steady-state solutioggoperly treated in the numerical integratiprintegration
were obtained, and parameters such as the target/sheath tepioceeds from the target/sheath boundary and continues up-
perature and energy transmission factor were calculated. Thaream. The appropriate fluid value fb, is calculated from
results are summarized in Table I. Detailed comparisons tgq. (10), where § is taken to be approximately 4.8, as dis-
fluid theory are discussed below. cussed in Sec. Il. The fluid values fdg, are also shown in
Results of the first run are shown in Figs. 2 and 3. HereTable 1. Although the kinetic and fluid, profiles are in
the parameters are very close to the DIII-D example disclose agreement for run 1, the kinetic effects are exaggerated
cussed at the end of Sec. I, so the length scales in Fig. 1 stilh runs 2 and 3, leading to considerable differences between
apply. Figure 2a) shows theT, profile, whereT, is calcu-  the two profiles in the vicinity of the target. The results for

Ne="Ngo(1l— az)

lated from the distribution function, run 2 are shown in Figs. 4 and 5. The results for run 3 are
m shown in Figs. 6 and 7.
Tfﬁ d3v v2f,. The velocity space mesh for all three runs consisted of
e

200v points and 50 points. A dense grid i is necessary

The heat flux, shown in Fig.(B), is nearly constant along to accurately represent both the bulk and tail of the distribu-
the field line, as would be expected in steady state. It igion function, especially in the case of a large temperature
noteworthy, however, that the heat flux is not precisely congradient. One type of discretization error in this system in-
stant. The steady increase seen in Fiy) & actually due to  volves the nonlinear collision operator, which spuriously
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FIG. 7. Time evolution ofPETrun 3 showinga) temperature at sheaih,

(b) energy transmission factaf, and(c) normalized sheath potentidl, as
functions of time. The time is specified in code units, defined as the length
of the field line(30 m) divided by the maximum velocity mesh poifeap-
proximately 4{¢,/me)*?].

FIG. 6. Results ofrETrun 3 showinga) the temperature profile antd) the
parallel heat flux(MW/m?). In (a) the kinetic solution fronFpPET is com-
pared to conventional fluid theofgashed lingfor the same heat flux. The
triangles in(b) show mesh points of the numerical simulation.

generates a certain amount of energy. The effect manifesisy are fixed in the comparison. Furthermore, sificg is
itself in Fig. 2b) as a small, but steady increase in the heareduced, but) remains approximately constant, the physical
flux. The magnitude of this numerically generated energyalue of Adg, is also reduced in comparison to the classical
source depends on the velocity space mesh, which is thealue. For example, in run 3 the classical valueAdb, is
same for each of the three runs. Therefore, in a situatiod62 eV, whereas the kinetic value is 105 eV, a considerable
where the temperature gradient is large, corresponding to difference.

large physical heat flux, the spurious contribution is rela-

tively small, as in Fig. ).

Several interesting facts can be discerned from Table | 440, N —
and Figs. 2—7. In Sec. Il we argued that the divertor has a ;
single collisionality regime, i.e., that./L{ should be inde-
pendent of the heat flux, or density. This argument was base
on fluid theory combined with classical target/sheath bound-
ary conditions. In fact, however, kinetic solutions show an

FPET runs (1)-(3)
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increased. This is because the upstream temperature is inﬁ 10-3'

creased, thereby increasing the MFP, while the connectiond
length to the target remains fixed. As a result, the distribution =

function in the target/sheath region becomes rich in super-2 "9'4;* N ,g)\_
thermal electrons and increasingly nonisotrofsee Figs. 8 i AN \\
and 9. The distortion of the distribution function also modi- 10° ! ) : . )

fies the way the heat flux is distributed in energy, i.e., near 0 5 10 15 20 25

. . 4 ) NORMALIZED ENERGY
the target the heat flux is carried by a larger relative fraction

of energetic electrons, as .Shown in Fig. 10. S'@‘s &  FIG. 8. Normalized distribution function near the target/sheath boundary vs
measure of the energy carried by electrons escaping througidrmalized energy for each of the threeeTruns. The normalized energy is
the sheatl{see Eqgs(7) and (8)], its value is dramatically E=m?/(2T), whereT, is evaluated locally. The distribution functions

enhanced by these non-Maxwellian features. It is easy to sce integrated over pitch angle and rescaled to give unity when integrated
’ overE. A Maxwellian distribution is shown for comparison. A superthermal

that an increase i must |eaq to a corresponding drop in ;s visible in each of the three runs, becoming more dramatic as the heat
Teo, When compared to the fluid value, because lipthand  flux increases.
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FIG. 10. Heat fluxMW/m? per eV} vs energy(eV) at two points along the
field line—near the target/sheath boundary and near the upstream
boundary—forrPeT run 3. The normalized energy of the positive peak is
F 7] 4.75 at the upstream location and 5.73 near the target. Recall that the nor-
1 malized energy isn.w?/(2T,), whereT, is evaluated locally, as in Fig. 8.
The distribution of heat flux near the target is shifted toward higher normal-
ized energy and contains a high energy tail due to free-streaming electrons
Frun 3 b from upstream.

A
-10 -5 0 5 10

PARALLEL VELOCITY

PERPENDICULAR VELOCITY

Tsurpr

code gives a proper kinetic treatment of the competition be-
FIG. 9. Contour plots of the normalized distribution function near the targetltwgen ,free strgamlng along the field Ilne.anq co!I|S|onaI scat-
sheath boundary for each of the threeT runs. The velocities are normal-  t€fing in velocity space. The electrostatic field is calculated

ized to the local thermal velocity,= (To/m)*2 The distribution functions by imposing guasineutrality along the entire field line. The

are rescaled by the factogn, 1. Because energetic electrons are absorbed otential drop across the target/sheath boundary is calculated
by the target, the distribution functions are depleted of energetic electrong restricting th lectron flux ina thr h th heath

propagating upstream, i.e., with negative Lower energy electrons trav- y restnc g € electro u €scaping oug € shealh.
eling toward the target are reflected by the sheath potential and fill in thel N€ sheath itself, however, is not resolved. Rather, the De-
depleted region through pitch-angle scattering. Note, the spatial positioye sheath, the ion gyrosheath, and the ionization layer in
shown here is 12 cm upstream of the target. front of the target are all compressed into one boundary con-
dition that requires specifying the electron flux to the target.

In the above discussion we emphasized the role of ki- Kinetic results obtained witlFPET have been compared

netic effects on the target/sheath boundary boundary condf© classical fluid results for the case of a simphenradia-
tion. These effects seem to be independent of any kinetic

modifications to the thermal conductivity. To demonstrate

this, we recalculated the fluid, profile using the kinetic 150 T ' ' ! '
value of Ty as a boundary conditiofBC) in Eqg. (1). [Using

the kinetic value ofT o is equivalent to assuming the kinetic
value of § and recalculatingl'y, from Eq. (10).] With the
adjusted BC the fluid . profile accurately tracks the kinetic
profile for 10—15 m upstream of the target, as shown in Fig.
11. We therefore conclude, in the case of a simple divertor,
that classical thermal conductivity is nearly correct and that
only modest flux-limitingZ® or nonlocal correctioris®
would be required to accurately model the kinéficprofile
farther upstream. For the model studied in this paper, the
major correction to fluid theory arises in the sheath boundary

condition. In more general divertor studies, however, strong -30 25 20 a5 0 5 0
radiation cooling of electrons may lead to steeper tempera- DISTANCE FROM TARGET (m)

ture profiles, requiring more significant modifications of the

thermal Conductivity_ FIG. 11. Temperature profile frompPeT run 3, as in Fig. @), but now
compared to fluid theory with an adjusted boundary condition that assumes
the kinetic value off .. With the adjusted BC the fluidl, profile accurately
tracks the kinetic profile for 10—-15 m upstream of the target. Note that the

VI. CONCLUSIONS
Electron transport along open field lines in the divertegdifference between the two profiles is exaggerated near the upstream bound-
ary. This is because the kinetic simulation imposes a Maxwellian distribu-

S(_:rape-off layer of a tokamak has been studied numericallyqp, for incoming electrons, an unnatural boundary condition since the dis-
with the Fokker—Planck edge transport co@®ET). The tribution function is actually carrying a substantial heat flux.

- - - fluid theory T
(with adjusted b.c.) ]

100~

TEMPERATURE (eV)
o
-]
—
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tive) divertor. We find that the free streaming of electronsenergy dependence of each individual cross section relative
from the midplane of the SOL creates a surplus of supertherto the electron temperature and the population of superther-
mal electrons in the vicinity of the target. As a result, themals.

sheath energy transmission factor is enhanced relative to the
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