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Abstract. The CQL3D Fokker-Planck equation solver is being upgraded to allow for the Finite-Orbit-Width 
(FOW) capabilities, which will provide an accurate description for a neoclassical transport, losses to the walls, 
and transfer of particles, momentum, and heat to the scrape-off layer.  Two different options are discussed for  
implementing the FOW capabilities. In one option, the Fokker-Planck equation is solved for the distribution 
function of orbits centered around given flux surface; in the other, the equation is solved for the local distribution  
function at the grid points along the midplane.  Both options use a fast lookup table that allows characterization  
of orbits without actually tracing them.  The lookup table, in effect, performs mapping from the Constants-Of-
Motion space onto the (R0,  u0,  θ0) computational space on the midplane.  The FOW modifications have been 
implemented for the formations of neutral beam source, rf quasilinear diffusion operator, particle diagnostics and 
collisional operator, and internal boundary conditions are being refined.  

1.   Introduction

The CQL3D Fokker-Planck equation (FPE) solver [1, 2] is widely used in the tokamak 
physics community because of its versatility. It is a relativistic, multi-species code with the 
full nonlinear Coulomb collision operator and quasilinear RF diffusion terms for waves in a 
broad frequency range. It also models a neutral beam source of ions, and is coupled with full 

wave, ray-tracing, and transport codes as 
part of the SciDAC Integrated Plasma 
Simulator project. The code is favored by 
experimentalists because of a large set of 
synthetic diagnostics tools.  Until now 
CQL3D was using the Zero-Orbit-Width 
(ZOW) approximation; present work 
describes the recent modifications in the 
code to account for the Finite-Orbit-Width 
(FOW) effects.  The FOW capabilities will 
provide an accurate description for a 
neoclassical transport, including very 
important losses to the walls, and transfer of 
particles, momentum, and heat to the scrape-
off layer. For the FOW modifications, two 
options have been considered, which are 
illustrated in Fig. 1.  In the first option, the 
distribution function for a given flux surface 
consists of all orbits that have same value of 
bounce-average poloidal flux <Ψpol >, equal 
to the value of poloidal flux at this surface. 

FIG. 1. Two options for introducing FOW effects  
into CQL3D code: (a) Distribution function of D+ 

orbits in NSTX centered around given flux  
surface;  (b) Local distribution function at R0. 

(a) (b)
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As seen in Fig. 1(a), the trapped orbits (red) representing such distribution are simply centered 
around the flux surface; the co-passing and counter-passing (both black color) are shifted in 
opposite direction from the surface. Such distribution function of Ψpol-centered orbits is not 
the local distribution function of particles that would be needed for calculation of current and 
for synthetic diagnostics; but once theΨpol-centered distribution function is known, the local 
distribution can be reconstructed at any given (R, Z) point in cross-section. In the second 
option, illustrated in Fig. 1(b), the distribution function is actually the local distribution 
function at point R0, the intersection point of the flux surface with the midplane.  Hereinafter, 
the subscript “0” refers to the points on the midplane.  Each option has its own advantages and 
drawbacks. The main advantage of the first option is that it is fast – only twice slower than the 
original CQL3D-ZOW code. However, only partial FOW capabilities are implemented in this 
version. The FOW-related modifications are made for the formations of particle source 
operator (NBI source), RF quasilinear operator, synthetic diagnostics, and the loss cone. Other 
than that, the collisional operator remains ZOW, which is justified by the fact that each orbit 
spends approximately equal time on each side of magnetic surface. The Fokker-Planck 
equation also remains in the ZOW form (except modifications listed above), with same 
boundary conditions as in the original ZOW FPE. For these reasons, we call this version the 
Hybrid-FOW model. Because of the ZOW-type FPE, the model lacks neoclassical transport; 
however, a model radial diffusion can be added into FPE in a same manner as it is done in the 
ZOW version of the code. 

In the second version, which we call Full-FOW, the bounce-averaged FPE is re-written to 
include all proper transformation coefficients and proper Jacobian, starting from the canonical 
angle-action space and casting the FPE into the form that is solved over “convenient” 
computational 3D-grid. As a result, such FPE includes all radial terms that yield neoclassical 
radial transport. The collisional operator is numerically averaged over each orbit of the 3D-
grid. The main complication in this version is the internal boundary conditions (IBC).

2.   COM mapping table

It should be emphasized that the CQL3D code seeks the solution for the bounce-averaged 
(BA) Fokker-Planck equation, so that the distribution function, whether it's option one or two 
discussed above, is a function of only three variables – a spatial coordinate (Ψpol or R0), the 
particle speed (momentum/rest-mass) u0, and the pitch-angle θ0 related to the spatial 
coordinate. Therefore, all source or sink terms should be expressed in terms of only one 
spatial coordinate. In the ZOW approximation, this was a trivial task; if, for instance, there is 
a source of particles at some point (R, Z), we only have to find the flux surface that goes 
through this point and then follow the surface to the midplane to assign all these particles to 
the coordinate R0. With FOW modifications, such particles must be assigned to sources at 
different midplane coordinates, because the shape of orbits depends on local (u, θ).  It is clear 
that the direct tracing of orbits would enormously increase the computation time.  To address 
this problem, a fast lookup table procedure has been developed that allows a nearly immediate 
characterization of orbits. It can be used for both options discussed above.  The lookup table, 
in effect, performs mapping from the Constants-Of-Motion (COM) space onto the (R0, u0, θ0) 
space on the midplane [3], where the grids are defined. The COM table is generated in the 
beginning of each run; it uses uniform grid in adiabatic invariant µ and canonical angular 
momentum pϕ, and generally non-uniform grid in particle speed u (to be replaced by total 
energy, when the radial electric field is added). Thus, the COM  table is generated as a 
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function of (u, µ, pϕ)-indices, (iu, iµ , ipϕ ). The table contains values for the radial coordinates 
of orbit legs on the midplane, corresponding pitch-angles, and the values of Ψpol at the legs' 
coordinates. Besides, the values of bounce-average <Ψpol> and bounce time τb are found and 
stored by tracing the g.c. orbits for each grid triplet (iu, iµ , ipϕ ). The whole calculation for 
generating the table and tracing all orbits takes ~5 min on a single CPU.  The usage of the 
table for the formation of the particle source operator is as follows:  (1). For each particle 
“born” at point (R, Z) in plasma cross-section, with local (u, θ), evaluate pϕ and µ .  (2). Find 
the nearest triplet index (iu , iµ , ipϕ ) in the corresponding grids of  (u, µ, pϕ).  (3). Call the 
table. A logical branching based on the sign of the local cosθ  is used to identify the proper 
orbit (up to two orbits may exist for a given (iu , iµ , ipϕ )).  In the Hybrid-FOW version, the 
particle is assigned to the flux surface nearest to <Ψpol> found from the table.   In the full-
FOW version, the particle is assigned to position of orbit legs on the midplane. Thus, the 
source is formed in terms of the midplane computational coordinates in which the Fokker-
Plank equation is to be solved.

A similar procedure is applied for the formation of the RF quasilinear diffusion operator 
(example for hybrid-FOW): Consider a ray element at the local point (R, Z). Set a local grid 
over the resonance region in local (u||, u⊥)-space (vertical strip for ICRH case). For each local 
(u||, u⊥)-point from the resonance region, find the value of <Ψpol> from the COM table;  then, 
determine the nearest grid-surface ρ0 and corresponding midplane value of pitch angle θ0. 
The power from the ray element is assigned to the quasilinear coefficient at this (ρ0, u0, θ0).  It 
is seen that in FOW, the ray-element power is “spread” over many surfaces.  Hence, a broader 
profile of current density, comparing to ZOW.

The table is also used for the formation of the loss cone.  The g.c. orbits are traced for every 
(iu, iµ , ipϕ )-index in the table: If 
the orbit + gyro-radius hits the 
wall (outside of LCFS), the 
particle is considered lost. 
3.   Application of the Hybrid-
FOW version

As noted above, the distribution 
function found at R0(lR) radial 
grid point as a solution of the 
Hybrid-FOW model, is not a 
local distribution function. It is 
rather the distribution function 
for particles with given BA 
radial position, none of which 
passes through R0, except the 
stagnation orbits. We designate 
it as f<Ψ>(R0, u0, θ0). However, 
once such solution is obtained, 
the local distribution floc(R, Z, u, 
θ) can be reconstructed at any 
given (R, Z) point in cross-
section, including points along 

FIG. 2. Left column: Distribution function f<Ψ> as a solution of  
the Hybrid-FOW version. Right column: Reconstructed local  
distribution function at different midplane points. NSTX plasma  
with NBI and RF heating.
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the midplane, by using the COM table. The example of reconstructed local distribution is 
shown in Fig. 2. The orbits with θ0<π/2 come from smaller (inner) flux surfaces, and they are 
well confined; the orbits with θ0>π/2 come from larger outer flux surfaces, many of such 
orbits are lost to the wall (orbit-position + gyro-radius). 

For synthetic diagnostics, the local distribution functions are reconstructed along sight lines. 
Typically, only the high-energy part of the distribution, E > 30 keV, is required for 
diagnostics. As seen in Fig. 1, the FOW effects are already significant for such particles. As an 
example, when the FOW effects were ignored in the CQL3D-ZOW calculations of Fast Ion 
Diagnostics (FIDA) in NSTX, the predicted spatial profiles were shifted towards magnetic 
axis, comparing to the measured signal [4].  In contrast, application of the Hybrid-FOW 
version yields an almost perfect match of the simulated FIDA profile with experimental data, 
in terms of the peak position and magnitude [5]. 

4.   Development of the Full-FOW version

The initial approach for the derivation of the bounce-averaged FPE has been developed in [6, 
7]. The main idea is that the original 6D kinetic equation can be first written in canonical 
action-angle space, and then it can be averaged over periodic angle variables, therefore 
reducing the dimensionality to 3D. Such averaging  is  justified by assumptions of toroidally 
symmetric magnetic geometry, bounce time τb of charged particles being much less than the 
collision time, and small gyroradius. However, the remaining three variables (action variables) 
are not suitable for numerical coding. Therefore the next step is to substitute the canonical 
action variables by a new set of invariants  I = (I1, I2, I3)  that define finite-orbit-width motion 
in symmetric torii  and which are better suited for numerical grids [8, 9, 10].  Such 
substitution results in a general shape of the bounce-averaged Fokker-Planck equation for the 
particle distribution function f0 :

∂
∂ t

J f 0  I ,t = ∂
∂ I i

J [Dij ∂
∂ I j

−F i
] f 0 I , t 

where summation convention is used.  The Jacobian, J, is such that f0  is the number of 
particles in the volume element Jd 3I.  The bounce-averaged diffusion coefficient and friction 
terms resulting from the local collisional diffusion are thus given by

Dij
=〈

∂ I i

∂u
Du u ∂ I j

∂u
〉 and F i

=〈
∂ I i

∂u
⋅Fu

〉

where the tensor Duu and vector Fu are the local collisional plus QL RF diffusion coefficients 
and the collisional friction, respectively. The brackets <...> indicate a bounce average along 
the g.c. orbit defined by the COM. Note that Coulomb collisions and RF QL diffusion are a 
spatially local phenomena, changing only a particles velocity u, not position.  Similarly, the 
bounce-averaged toroidal electric field gives rise to the term

F T
i
=〈

−q
m

ET

∂ I i

∂u
⋅e〉 .

A particular form of the FPE depends on the choice of  I = (I1, I2, I3) space. Since all particles 
can be assumed to pass through the torus equatorial midplane (or equivalently the 
“stagnation” surface [3] in the non-up-down symmetric case), we can take the constants of 
motion to be (I1, I2, I3) = (u0, θ0, R0), the particle speed (or, relativistically, momentum-per-
mass), pitch angle from the direction of the magnetic field, and the major radius of the particle 
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evaluated at the midplane.  With this choice, the actual local particle distribution on the 
equatorial plane is determined.  For the selected grid space I = (u0, θ0, R0), the collisional 
operator can be written as 

 ∂ f
∂ t  coll

=
1

u0
2

∂
∂ u0 A f  B
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∂ u0
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∂0

 R13
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2 sin0
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2
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Here, ∂R0/∂u, ∂θ0/∂u, ∂R0/∂θ,  ∂θ0/∂θ  are the transformation coefficients from a local point 
along orbit (u, θ, R, Z) to the midplane, and  λ = J/(u0

2sinθ0)  being the normalized FOW-
Jacobian. The “radial” coefficients R03, R13, R23, R33 are expressed through the local collisional 
coefficients Ac, Bc, Cc, Dc, Ec, Fc [2].  These radial coefficients are absent in ZOW or Hybrid-
FOW version. They give rise to the neoclassical bootstrap current and radial diffusion and 
pinches due to orbit modifications by collisions. Velocity diffusion terms B, C, E, F are not 
completely new – they are also present (in ZOW form) in the Hybrid-FOW version. Here, 
they are revised to include transformation coefficients:

B = λ〈Bc〉  ,    C = λ〈Bc ∂θ0/∂u + Cc ∂θ0/∂θ 〉  ,    E = λsinθ0〈Bc ∂θ0/∂u + Cc ∂θ0/∂θ 
〉  ,

F = λsinθ0 〈 Bc (∂θ0/∂u)2 + 2Cc (∂θ0/∂u)(∂θ0/∂θ) + (Fc /sinθ) (∂θ0/∂θ)2 〉  .
Similar expressions can be written for the quasilinear RF diffusion operator.
The collisional drag coefficients are also modified:

A = λ〈Ac〉  ,   D = λsinθ0〈Ac ∂θ0/∂u + (Dc /sinθ) ∂θ0/∂θ 〉  .
Note that in ZOW version, only ∂θ0/∂θ  transformation coefficient is non-zero. Collisional 
operator is averaged along each orbit in (u0, θ0, R0)-space.  Fully non-linear, that is, self-
consistent local collisional coefficients [11] are implemented in CQL3D. 
The above expressions exhibit the basic physics of FOW neoclassical transport:  the 
collision/RF velocity diffusion leads to scattering in COM space at each point along the orbit, 
weighted by the dependence of the COM on local velocity, ∂Ii/∂u, and multiplied by the local 
collision and RF coefficients. We emphasize that this formulation of neoclassical transport 
applies to the full g.c. particle orbits in velocity space, with no assumption, as is the usual 
neoclassical theory, that g.c. orbits are small compared to the plasma radius.  Moreover, the 
radial electric field is amenable to this treatment.  We expect that examination of the 
individual particle flows in COM space will provide additional insight into neoclassical 
transport, beyond perhaps what is obscured by the distribution function averaging in moment 
theory.  
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One of the main challenges in development of the Full-FOW version is the internal boundary 
conditions (IBC). In the ZOW version, the IBCs “connects” the two borders of the trapped-
passing cone (dashed lines in Fig. 2). When the largest trapped particle (the “pinch” orbit) is 
scattered by collisions in pitch-angle, it can become either a co-passing or a counter-passing 
particle. The IBCs are formulated in such a way that the total flux of particles across the two 
borders of the trapped-passing cone is zero, and the flux at the trapped side of each border is 
same, as it describes the same trapped particle. An important simplification in ZOW case is 
that the trapped-passing borders are straight lines, and that each IBC connects two borders at 
one flux surface. In the Full-FOW case, the pinch orbit crosses the midplane at different radii, 
hence, the IBCs should connect the fluxes at different radial grid points. As the development 
of the IBCs is still in progress, here we provide results of initial test for the Full-FOW model 
without IBCs.  

The test is performed for the NSTX conditions without NBI or RF heating; D+ ions at Ti =1.27 
keV,  E = 0-200 keV energy range in simulations. The main purpose of the test is to compare 
the Full-FOW version with the Hybrid-FOW version. The first column in Fig. 3 corresponds 
to the Hybrid-FOW version. It shows the local distribution function at three midplane points; 
it is reconstructed from solution, which is simply a Maxwellian distribution in this test case. 
The dashed lines represent different boundaries; they are found from analysis of (µ, pϕ) space, 
for each u-level. The red lines mark the trapped-passing boundaries that are similar to ZOW-
case boundaries. The bold magenta line marks the pitch angles for stagnation orbits (dot-like 
orbits). The orbits in near proximity of the stagnation line are passing orbits; the boundaries 
where they exist are shown with blue lines (one of them is always θ0 = π/2). Black lines are 
related to the loss cone borders. 

The second column in Fig. 3 shows the solution of FPE obtained with the Full-FOW version. 

FIG. 3.   Column (a) – reconstructed floc  for the Hybrid-FOW run;   (b) – solution obtained in the  
Full-FOW run without radial transport;   (c) – Full-FOW run with radial transport.
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The radial terms R03, R13, R23, R33 were not added in this run, so there is no radial transport in 
this case; the velocity diffusion and drag terms included all transformation coefficients as 
described above. It is seen that the distribution function in this run looks similar to that 
obtained with the Hybrid-FOW run. One noticeable difference is the presence of a “ridge” 
formed at the lower and upper trapped-passing boundaries (red dashed lines) in the Hybrid-
FOW run. We believe that such “ridge” will also be formed in the Full-FOW runs when the 
IBCs are added into the code. The third column in Fig. 3 shows the results from the Full-FOW 
run with the radial transport enabled. In this run, a high-energy tail develops at ρ > 0.4 that 
indicates to a radial transport of energetic ions from plasma core to the edge. Another new 
feature is a lack of counter-passing ions, next to the loss-cone. It appears that the rate of 
scattering of counter-passing particles into the loss cone, and additional radial transport of 
these particles, became higher than the rate at which particles are replenished from lower 

energies. It is also a possibility that a 
numerical instability develops in that velocity 
range; this is a subject for further 
investigation.

Additionally, Fig. 4 shows how the density 
profile of ions was changed in the Full-FOW 
run with radial transport. The initial profile 
was setup to have an initial “bump” at ρ ≅  
0.8. It is seen that at t = 20 ms, this “bump” 
has fully diffused out, and this change occurs 
mostly due to the thermal ions in the 0-1.4 
keV energy range. Thus, the radial terms 
induced transport in both the high-energy 
range, as seen in Fig. 3(c), and in the thermal-
energy particles. 

Another focus of interest is the plasma current 
calculations. Fig. 5 shows the current profiles 
obtained in the three runs discussed here. The 
current profile in the Hybrid-FOW run is 
based on the reconstructed local distribution, 
as that shown in Fig. 3(a). Most part of this 
current is due to the loss cone. The figure also 
shows profiles for the Full-FOW runs 
with/without radial transport. The magnitude 
of the current reasonably agrees in all three 
cases, although the results in the Full-FOW 
runs cannot be accurate before the IBCs are 
applied. 

In a summary, for high-energy diagnostics, the Hybrid-FOW model seems to capture the most 
of FOW effects. It is relatively simple, robust and almost as fast as the original ZOW version. 
It lacks the neoclassical transport, but a model radial transport can be used, same as in the 
CQL3D-ZOW version.  The initial tests for the Full-FOW version show reasonable results; 
the internal boundary condition has yet to be added. 

FIG. 4. Change of density profile in Full-FOW 
run with radial transport.  Thin lines – at t = 0,  
bold lines – at t = 20 ms.

FIG. 5. Current density profiles in Hybrid-FOW 
and Full-FOW runs.
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