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Abstract
CQL3D is a general purpose computer code for modeling auxiliary heating in toka-
maks. It calculates the radial distribution of 2D in momentum-space bounce-aver-
aged, ion and electron distribution functions in toroidal geometry, consistent with
deposition of rf and/or neutral beam injected power and a diffusive radial transport
model. This calculation is carried out with an array of bounce-averaged Fokker-Planck
(FP) solvers running on noncircular magnetic flux surfaces, giving the steady-state,
toroidally-averaged distribution resulting from a balance between collisions, dc elec-
tric field, rf quasilinear diffusion, synchrotron radiation, neutral beam injection, and
radial diffusion. CQL3D is coupled to ray-tracing codes for electron cyclotron, lower
hybrid, and fast waves, to a neutral beam deposition code, and to a noncircular equilib-
rium code. We describe the code, providing expressions and methodology for calcula-
tion of the FP coefficients from each of the constituent processes, and give benchmark
applications in order to validate the major components of the code.
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Chapter 1

INTRODUCTION

A complete Fokker-Planck (FP) treatment of rf or neutral beam heating in tokamaks
on time scales longer than the collisional time (τcoll) generally requires solution of an
equation which is at least two dimensions in momentum/velocity space and two dimen-
sions in configuration space. That is, we assume the distribution functions of electrons
and ions are independent of azimuthal velocity angle about the ambient magnetic field
and of spatial toroidal angle in the symmetry direction of the tokamak, in accord with
the usual situation ω−1

c � τcoll where ωc is the gyrofrequency of the particles, and the
time for achieving toroidal equilibrium on a flux surface is short compared to τcoll or
the transport time.

An associated further reduction in dimensionality occurs in cases where the bounce/
transit time of the particles, τb, is short compared to the collision time, τb� τcoll. The
present generation of larger tokamak experimental devices often operate with most of
the plasma in this low-collisionality “banana” regime. Moreover it is usually the case
that the non-Maxwellian particles generated by auxiliary heating and current drive are
in the low-collisionality regime. In such cases, a “bounce-average” over the bounce
or toroidal transit motion of the particle is appropriate, reducing the FP equation to be
essentially three-dimensional since the particle distributions as a function of poloidal
angle become constant when expressed as a function of the collisionless constants of
motion. We take the resulting three variables to be the magnitude u of the momentum-
per-rest-mass, the pitch angle θ0 measured from the magnetic field direction and eval-
uated at the minimum magnetic field position on a flux surface, and a radial coordinate
ρ . These coordinates are independent variables for the three-dimensional bounce-aver-
aged FP code CQL3D (Collisional QuasiLinear 3 D) which is the focus of this paper.
Our purpose in this paper is to describe the code in detail and to validate it through
several important benchmark applications in tokamak plasmas.

The CQL3D code, which had its genesis in the CQL code [1], consists of a 2D-in-
momentum-space, multi-species, relativistic, bounce-averaged, collisional/quasilinear
FP equation solver running on a radial array of non-circular flux surfaces, in tandem
with rf ray-tracing and/or neutral beam deposition packages. Sources in the FP equa-
tion resulting from the auxiliary heating systems, and concomitant self-consistent non-
Maxwellian distortion of the distribution functions, are obtained. Radial transport is
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accounted for by inclusion of radial diffusion and particle pinch operators. Thus, the
code provides for transport of the full distribution functions. In comparison with the
present generation of transport codes, the code transports all the moments of the distri-
bution function rather than three moments (density, energy, and toroidal momentum);
however CQL3D does not presently provide for a self-consistent solution with the
time-dependent Ampère/Faraday laws. The code is similar to the BANDIT3D [2, 3],
Giruzzi[4], Hammett[5], Fukuyama[6], and Smirnov[7] codes, but is different with re-
gard to: greater generality, being multispecies, larger number of coupled deposition
packages, noncircularity, and in other ways, including aspects of the numerical ap-
proach.

The methodology for obtaining the bounce-averaged, quasilinear rf FP coefficients
due to combined Landau, transit-time, and cyclotron wave-particle interaction is new,
and is discussed at length. Synchrotron radiation is strongly enhanced by electron
nonthermal effect, and we describe our model for this process. The radial transport
contains novel features which are described.

We consider the following four applications of the code. These applications mainly
are to benchmark the code but also to elucidate the breadth of application possible
with the code. Results [8] for banana-regime Ohmic conductivity both at low and high
inverse aspect ratio ε accurately agree with previous analytic calculations. Good agree-
ment is obtained between electron cyclotron damping calculated via the rf quasilinear
operator in the code and a relativistic dispersion relation solver. Neutral beam current
drive in an ITER-like plasma is calculated. Good agreement for current drive is found
between a full multispecies (ion/electron) treatment of the particle distributions, and a
FP code solution for only the ion distribution combined with an approximate analytic
calculation of the electron contribution to NBCD. We also illustrate spreading of the
runaway electrons by radial transport in a typical tokamak situation.

3



Chapter 2

FOKKER-PLANCK
EQUATION

The theory of bounce-averaged FP equations for plasmas is examined in Refs. [1], [8],
and [9]. Here we present a heuristic derivation of the appropriate bounce-averaged
FP equation in order to review some of the underlying assumptions, to give notation,
and to present the specific physical effects which are included in our treatment. The
following section will provide greater detail on each of the terms in the equation.

We are interested in time scales of order or greater than the collision time; in usual
tokamak situations this time is much greater than the cyclotron period of the electrons
or ions. Thus, we assume the electron or ion distributions are azimuthally symmetric
about the ambient magnetic field direction. In this “drift-kinetic” regime, we may take
the particle distribution (more precisely, phase-space distribution of guiding centers)
to be a function f (r,ε,µ, t) [10, 11, 12] where r is position vector, ε = (γ − 1)mc2 is
particle kinetic energy, and µ = 1

2 u2
⊥/B is magnetic moment. Here, γ is the relativistic

factor γ2 = 1 + u2/c2, m is particle rest mass, c is the velocity of light, u = p/m is
particle momentum per mass, and B is the magnetic field strength. [13, 10, 11, 12]
Subscripts indicating parallel and perpendicular refer to the magnetic field direction.
Then the drift kinetic equation at each point r in the plasma can be written

d f
dt

= −∇u ·Γu +R( f )+S, (2.1)

where

d f
dt

= total derivative following the particle guiding center,

=
∂ f
∂ t

+ vg.c. ·
∂ f
∂ r

+
∂ f
∂ µ

dµ

dt
+

∂ f
∂ε

dε

dt
, (2.2)

vg.c. = v‖b̂+~vD,
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~vD = guiding center drift perpendicular to b̂≡ B/B,

−∇u ·Γu = C( f )+Q( f )+H( f ), (2.3)

where
C = Coulomb collision term [13, 10, 11, 12],
Q = rf quasilinear diffusion operator [14, 15],
H = synchrotron radiation term [9],
R = model radial diffusion operator given below,
S = particle source/sink, for example, from neutral beam deposition, or ripple loss.

The local FP operator ∇u ·Γu can be written

−∇u ·Γu =
1
u2

∂G
∂u

+
1

u2 sinθ

∂H
∂θ

, (2.4)

G = −u2
Γu ≡

(
A+B

∂

∂u
+C

∂

∂θ

)
f , (2.5)

H = −u sinθ Γθ ≡
(

D+E
∂

∂u
+F

∂

∂θ

)
f ,

where Γu,Γθ are the u,θ components in momentum space of the flux vector Γu; the
FP coefficients A→ F are specific to the processes in Eq. 2.3. In terms of the small
parameter δ ≡ ρLpol/a, where ρLpol is gyroradius using the poloidal magnetic field,
i.e., ρLpol is the banana width, and a is a representative plasma minor radius, we have
[16] in Eq. 2.2

vD ∼ δ ,

dµ

dt
∼ δ

2,

dε

dt
= qE‖

u‖
γ

+O
(
δ

2) .
The CQL3D code uses the “zero-banana-width” approximation, viz., δ → 0, thus

the collisionless guiding center orbits of the particles are assumed to move on a flux
surface identified by radial coordinate ρ . In addition, electrostatic potential terms are
omitted in this treatment. Thus, the total derivative of f is given by

d f
dt

=
∂ f
∂ t

+ v‖b̂ ·∇ f +qE‖v‖
∂ f
∂ε

+O(δ ). (2.6)

The partial derivatives in this equation are taken holding five of the six independent
variables ε , µ , r, t constant.

To obtain the bounce-averaged equation, the further ordering τb/τcoll � 1 is as-
sumed. The lowest order term in Eq. 2.1 is v‖b̂ ·∇ f = v‖ ∂ f /∂`B ∼ f /τb, where `B is
distance along B. All remaining terms are taken to vary on time scales at least as great
as τcoll. Thus, ordering f ,

f = f0 + f1 + . . . ,
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where fi ∼ O[(τb/τcoll)
i], we obtain

v‖
∂ f0

∂`B
= 0, (2.7)

∂ f0

∂ t
+ v‖

∂ f1

∂`B
= −

qE‖
m

∂ f0

∂u‖
+ RHS; (2.8)

RHS represents the right-hand side of Eq. 2.1.
Equation 2.7 shows that f0 is independent of distance along the magnetic field line,

viz., of poloidal angle on a flux surface since we assume toroidal symmetry, for each
region of phase space with velocity v‖ 6= 0. We assume that there is only one local
minimum of the magnetic field on a flux surface; this is the point through which all
particles pass. Here, f0 can be written as a function of ε,µ,ρ, t. Up-down symme-
try of the plasma cross-section about an equatorial midplane is presently assumed, for
computational efficiency. These assumptions exclude a complete treatment of flux sur-
face configurations which have multiple trapped-particle regions such as “bean” shaped
plasmas, or are not up-down symmetric.

The bounce-averaged equation is obtained from 2.8 by time-integrating over the
periodic particle motion, annihilating the second term,∮

dτ v‖
∂ f1

∂`B

∣∣∣∣
ε,µ,ρ,t

=
∮

d f1 = 0, (2.9)

to obtain a bounce-averaged equation

∂ f0

∂ t
=−

〈〈
qE‖
m

∂ f0

∂u‖

〉〉
+ 〈〈RHS〉〉 , (2.10)

where 〈〈 〉〉 is the bounce average,

〈〈( )〉〉 ≡ 1
τB

∮ ′
dτ ( ) ; (2.11)

the partial bounce time τB is defined τB ≡
∮ ′ dτ , dτ ≡ d`B/|v‖|, and the integral

∮ ′ is
taken along the particle orbit (v‖ varies according to the constants of motion) from the
minimum B point on a flux surface (the outer equatorial plane) to the particle turning
point for trapped particles, or to the maximum B point at the inner equatorial plane for
passing particles. Up-down symmetric flux surfaces are referred to here.

We will evaluate f0 on a radial array of non-circular flux surfaces which are labeled
by the radial variable ρ ≡ (Φ/πBT0)1/2 [16], where BT0 is a representative toroidal
magnetic field usually taken to be the vacuum magnetic field at the plasma major radius.
At each ρ , f0 is taken to be a function of the two momentum-space coordinates, u0
and pitch angle θ0, evaluated at the outer equatorial plane where the poloidal angle
θpol is zero; the distribution f at other θpol-locations is obtained using Eq. 2.7 and the
constants of motion, viz.,

f (u,θ ,ρ,θpol, t) = f0
[
u0(u,θ),θ0(u,θ),ρ, t

]
,
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where u0 = u,

sin2
θ0 = ψ

−1 sin2
θ , (2.12)

and ψ ≡ |B|(θpol)/|B|0, where |B|0 = |B|(θpol = 0) is the minimum magnetic field on
a flux surface.

We obtain the bounce-averaged FP equation 2.10 in a conservative form in momen-
tum space, i.e., except for the explicit source term S, we put the RHS of Eq. 2.10 into the
form of a divergence of a flux in u0-space and in ρ-space. This is desirable from a com-
putational point of view since then we can use a finite difference scheme which exactly
conserves the particle density f0 in u0, ρ-space [17]. Consider the number of particles
dN which are in the volume element d3u0 and are contained in a flux tube along the
magnetic field which is of unit cross-sectional area at θpol = 0, dN = 2τB |v‖0| f0 d3u0.
This expression is evident from physical considerations: f0 d3u0 is the number density
at θpol = 0, multiplying by |v‖0| gives the flux of particles into the tube, further multi-
plying by 2τB accounts for the length of time that “new” particles are fluxing into the
tube, i.e., the time interval before particles are being re-counted. The total number of
particles in the flux tube, per cross-sectional area, is

N =
∫

d3u0 2τB|v‖0| f0.

None of the RHS-processes in the FP equation Eq. 2.10, except S and R which will be
discussed later, change the total number of particles integrated over velocity space in a
flux tube. Hence it is clear that the quantity |v‖0|τB f0 will be an appropriate quantity
for which to obtain a conservative FP equation. We denote λ ≡ |v‖0|τB.

The bounce-averaged FP equation can thus be written

∂

∂ t
(λ f0) =−∇u0 ·Γu0

+ 〈〈R〉〉+ 〈〈S〉〉 , (2.13)

where the momentum-space divergence is given analogous to Eqs. 2.4 and 2.5,

−∇u0 ·Γu0 =
1
u2

0

∂

∂u0
G0 +

1
u2

0 sinθ0

∂

∂θ0
H0, (2.14)

G0 ≡ −u2
0 Γu0 =

(
A0 +B0

∂

∂u0
+C0

∂

∂θ0

)
f0,

H0 ≡ −u0 sinθ0 Γθ0 =
(

D0 +E0
∂

∂u0
+F0

∂

∂θ0

)
f0. (2.15)

In Killeen et al. [8] the bounce averages in Eq. 2.10 are performed, referring to Eqs. 2.4
and 2.5, giving the following simple prescription for obtaining the bounce-averaged
coefficients in Eqns. 2.14 and 2.15 in terms of the local coefficients in Eqns. 2.4 and
2.5:

A0 = λ 〈〈A〉〉 , B0 = λ 〈〈B〉〉 ,
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C0 = λ

〈〈
cosθ

ψ1/2 cosθ0
C
〉〉

, D0 = λ

〈〈
cosθ

ψ cosθ0
D
〉〉

,

E0 = λ

〈〈
cosθ

ψ cosθ0
E
〉〉

, F0 = λ

〈〈
cos2 θ

ψ3/2 cos2 θ0
F
〉〉

. (2.16)

We will also make repeated use of the flux surface average 〈 〉 of functions of the
constants of motion. Denoting the general function by G, the flux surface average is
the integral of G over the volume increment between two neighboring flux surfaces
labeled by Ψ and Ψ + ∆Ψ, divided by the volume increment. The quantity Ψ is the
usual poloidal flux function equal to poloidal flux divided by 2π . Thus, the flux surface
average is

〈G〉 ≡

∫
Ψ⊂∆Ψ

G d3x

∫
Ψ⊂∆Ψ

d3x
(2.17)

with volume element
d3x = Rdφ

dΨ

|∇Ψ|
d`p,

R is major radius, φ is toroidal angle, and `p is distance measured poloidally on a flux
surface. Denoting the magnetic field by B = Bφ +Bp where the poloidal magnetic field
magnitude is Bp = |∇Ψ|/R, reduces the flux surface average to the expression [16]

〈G〉 =
∮ d`p

Bp
G
/∮ d`p

Bp

=
∮ d`B

B
G
/∮ d`B

B
. (2.18)

We have used d`p/d`B = Bp/|B|.
If we let G = d3ug[u(u0)] with d3u = ψ|v‖0/v‖|d3u0 in accord with Eqs. 2.12, this

gives

〈G〉= d3u0
∣∣v‖0∣∣ τB g [u(u0)]

/∮ ′ d`B

ψ
, (2.19)

where
∮ ′ d`B indicated the integral along B from the outer to the inner equatorial plane.

For example, if g = f0 and integrate over u0-space, we obtain the relation between the
flux surface average density 〈n〉 and the above number of particles N in a flux tube∫

d3u0 2 |v‖0|τB f0,

〈n〉= N
/∮

(d`B/ψ) , (2.20)

where
∮

d`B is the integral along B encircling the plasma once in poloidal angle. In
the following section, the flux surface averages will be used in forming source terms in
Eq. 2.13.
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Chapter 3

BOUNCE-AVERAGE TERMS

In this section, formation of various bounce-averaged terms in the FP equation 2.13
and methods of implementation in the code are discussed.

3.1 DC electric field
The bounce-averaged dc electric field terms are obtained by re-examining the local term
appearing in Eq. 2.8 in divergence form, and then applying the procedures indicated in
Eq. 2.16. Thus, at given θpol on a flux surface, the electric field term can be written

qE‖
m

∂ f0

∂u‖
= ∇u ·

[
qE‖
m

f0
(
cosθ û− sinθθ̂

)]
, (3.1)

which gives contributions to the respective FP coefficients Eq. 2.5 equal to

AE =
qE‖
m

u2 cosθ ,

DE = −
qE‖
m

u sin2
θ .

The dc electric field is taken to be in the toroidal direction

Eφ = E0
R0

R
, (3.2)

where E0 is the field at the plasma major radius R0, giving

E‖ = Eφ ·B/|B|

=
E0 R0

R
Bφ

|B|
. (3.3)

Then, with Eqs. 2.16 and 2.12, the bounce-averaged coefficients are

AE0 =
λ qE0 u2

0
m

〈〈
cosθ

E‖
E0

〉〉
,
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DE0 = − λ qE0 u0 sin2
θ0

m cosθ0

〈〈
cosθ

E‖
E0

〉〉
. (3.4)

For trapped particles, the 〈〈cosθ(E‖/E0)〉〉 term which thereby has antisymmetric con-
tributions in θ will be zero. For transitting particles, we find〈〈

cosθ
E‖
E0

〉〉
=

1
τB

∮ ′ d`B

|v‖|
cosθ

R0

R
f

R|B|

=
sgn(cosθ0) γ R0 f

τb u0 |B|

〈
1

R2

〉∮ ′ d`B

ψ
, (3.5)

where f = RBφ is constant on a flux surface [16], and ψ and |B0| are defined following
Eq. 2.12. The indicated integrations are carried numerically, and results for Eq. 3.5
used in Eq. 3.2.

3.2 Relativistic collision coefficients
In present day tokamak experiments, relativistic effects on the electrons are frequently
of some importance. For example, in lower hybrid or fast wave current drive exper-
iments, the waves are launched with parallel velocity up to ∼ 0.9 c. Also, several
plasma diagnostics are sensitive to high energy electrons: hard x–ray radiation and
electron cyclotron emission detectors measure radiation from electrons at energies up to
∼ 500 keV. As described below, CQL3D presently incorporates a model for “mildly rel-
ativistic” Coulomb collisions [11, 12], accurate for usual tokamak situations in which
the relativistic tail electrons are colliding on a non-relativistic thermal population, i.e.,
vTe � c where vTe = (Te/me)1/2 is the electron velocity. (This model is being ex-
tended to a fully relativistic collision treatment [18] based on the methods developed
by Braams and Karney [10].)

The local collisional FP operator for species a colliding on species b is given by

∂ fa

∂ t

∣∣∣∣
c

= −∇u ·Γc,

Γc = −
2π Z2

a Z2
b e4 ln Λab

ma
∑
b

∫
M

·
[

fb(u′)
ma

∇u fa(u)− fa(u)
mb

∇u′ fb(u′)
]

d3u′. (3.6)

In the case that the primed “field” particles in Eq. 3.6 have momentum-per-mass u′2�
c2, then the familiar non-relativistic dyad is sufficient [11, 12],

M = ∇v ∇v
∣∣v− v′

∣∣ . (3.7)

This gives the following “mildly relativistic” collisional FP coefficients [11, 12],

1
Γa

∂ fa

∂ t

∣∣∣∣
c
=

1
u2

∂Ga

∂u
+

1
u2 sinθ

∂Ha

∂θ
, (3.8)
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with

Ga =
{

Aa +Ba
∂

∂u
+Ca

∂

∂θ

}
fa,

Ha =
{

Da +Ea
∂

∂u
+Fa

∂

∂θ

}
fa. (3.9)

The local coefficients are

Aa = − 1
2

u2
γ

3 ∂

∂u
(γIa) ,

Ba =
1
2

u2
γ

3 ∂

∂u

(
γ

3 ∂ga

∂u

)
,

Ca =
1
2

uγ
3 ∂

∂u

(
γ

u
∂ga

∂θ

)
,

Da = − 1
2

γ sinθ
∂

∂θ
(γIa) ,

Ea =
1
2

u sinθγ
3 ∂

∂u

(
γ

u
∂ga

∂u

)
,

Fa =
1
2

sinθ

(
γ4

u
∂ga

∂u
+

γ2

u2
∂ga

∂θ

)
, (3.10)

with

Ia =
1
u2

∂

∂u

(
u2

γ
3 ∂ha

∂u

)
+

γ

u2 sinθ

∂

∂θ

(
sinθ

∂ha

∂θ

)
, (3.11)

with Rosenbluth potentials in momentum space

ga(u) = ∑
b

(
Zb

Za

)2

ln Λab

∫ ∣∣v− v′
∣∣ fb
(
u′
)

d3u′, (3.12)

and

ha(u) = ∑
b

(
Zb

Za

)2 ma

mb
ln Λab

∫ |v− v′|
γ ′

fb
(
u′
)

d3u′. (3.13)

In the above, Γa and Λab are given by

Γa ≡
4π Z4

a e4

m2
a

,

and

ln Λab ≡ ln

{(
maMb

ma +mb

)
2αcλd

e2 max

[(
2E
m

)1/2

a,b

]}
− 1

2
,

with α the fine structure constant, λd the Debye length, and E the mean energy of
species a or b. The formation of the bounce-averaged coefficients [18] for Eqs. 2.14
and 2.15 follows the methods previously used for the non-relativistic case [1, 8, 19,
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Figure 3.1: Numerical approach to calculating δB0 from ray-tracing results.

20]. Briefly, the angular θ -dependence of the local-in-θpol distribution functions and
Rosenbluth potentials are expended in Legendre polynomials, and the local coefficients
A through F are evaluated at a pitch angle θ such that the particle’s orbit traces back
to midplane mesh points of θ0 according to the constraints of motion Eq. 2.12. This
eliminates the need for interpolation over a local u−θ grid during the bounce-average,
which thereby reduces to a simple addition.

3.3 The rf quasilinear coefficients
A major use of FP codes has been in modeling of high power rf deposition and conse-
quent quasilinear distortion of ion distributions by ion cyclotron radiation [1, 5, 21, 22],
or electron distributions by lower hybrid/fast waves [23, 24] and electron cyclotron
waves [20, 25, 26]. In this section we form bounce-averaged FP coefficients based on
full expressions for the rf quasilinear operator [14, 15], and we obtain the associated rf
damping. The method is applicable for arbitrary wave modes described within the ray-
tracing formalism, and for Landau/transit-time and/or cyclotron damping on electrons
or ions. Applications have been made to rf interactions with electrons.

The quasilinear diffusion coefficients are obtained based upon rf data passed to
CQL3D from a ray-tracing code. As illustrated schematically in Fig. 3.1 [(a) through
(d)]: (a) the input power spectrum of rf power P(k‖) is obtained, for example, from
an antenna code, and is discretized in k‖. (b) Consequently, each ray has power ∆P =
P(k‖)∆k‖ flowing along it at the launch point. The ray trajectories are calculated using

12



the linear dispersion relation. (c) The rays are discretized into ray elements of length
δ` in the poloidal plane much less than the plasma width. Ray spatial width is taken
to be δw, although in the limit of small δw this width will cancel out of the problem.
(d) In accord with the finite width ∆k‖ of the power spectrum associated with a ray
element, each element contributes a diffusion coefficient (for example, δB) which is
non-zero over a region in momentum-per-mass space also of finite width satisfying the
wave-particle resonance condition

ω− k‖ v‖−nωc/γ = 0, (3.14)

where ω is wave frequency, k‖ is a parallel wavenumber in the range of ∆k‖, n is the
order of the cyclotron interaction (zero for Landau/transit-time cases), and ωc is the
local cyclotron frequency evaluated with the rest mass. This contributes to the bounce-
averaged δB0. The data passed from the ray-tracing code to CQL3D, for each ray
element, includes sufficient information to evaluate the local quasilinear diffusion co-
efficient, viz., frequency, position, poloidal distance s along the ray, parallel n‖ and
perpendicular n⊥ refractive index, n‖-width ∆n‖ = c∆k‖/ω , power in the ray channel
∆P(s) evaluated from linear damping, rf polarizations Ex/|E|, Ey/|E|, and Ez/|E| eval-
uated in the local “Stix” frame [27], energy flux along the ray for electric field strength
|E| = 1, and the local magnetic field. The resulting contributions to the quasilinear
coefficients are used in the calculation of the power absorption for each ray element.

The FP equation is solved on a radial array ρi , i = 1, `ρ of mesh points. With each
point ρi , we associate the volume increment ∆Vi between (ρi−1 + ρi )/2 and (ρi +
ρi+1)/2, except the volume element associated with ρ1 extends to the plasma magnetic
axis and that associated with ρ`ρ

extends to the plasma edge. The distributions obtained
at each radial point ρi represent the average over the surrounding volume elements ∆Vi.
A ray element contributes to FP coefficients at ρi if it falls in volume increment ∆Vi.

Thus the quasilinear coefficients for the bounce-averaged equation can be formed
using Eq. 2.16 to relate the bounce-averaged to local quasilinear coefficients, and in
addition, an average is performed over volume ∆Vi. Then, the contribution δB0 to the
B0 coefficient at ρi , from each ray element lying in ∆Vi, is

δB0 =
1

∆Vi

∫
∆Vi

dV
λ

τb

∮ ′ d`B

|v‖|
δB. (3.15)

δB is non-zero only over the spatial volume represented by the ray element, and the
momentum space region in which Eq. 3.14 is satisfied.

The remaining coefficients can be similarly evaluated. However the following rela-
tions [1] simplify the task: for waves satisfying the wave-particle resonance condition
Eq. 3.14, the additional coefficients are related to δB0 (relativistically) by

δC0 =
1

uψ cosθ0 sinθ0

(
nωc

ωγ
−ψ sin2

θ0

)
δB0,

δE0 =
1

uψ cosθ0

(
nωc

ωγ
−ψ sin2

θ0

)
δB0,

δF0 =
1

u2 ψ2 cos2 θ0 sinθ0

(
nωc

ωγ
−ψ sin2

θ0

)2

δB0. (3.16)
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The ωc and ψ are evaluated at the position of the ray element.
In the following subsections we will give an expression for δB, discuss formation

of δB0 from ray element data using Eq. 3.15, and provide specifics of the method as
applied to the Landau/transit-time interaction, and the cyclotron interaction.

3.3.1 The δB coefficient
The δB coefficient in the volume represented by the ray element is obtained from the
relativistic generalization of the local Kennel and Engelmann [14, 15] expressions,

∂ f
∂ t

∣∣∣∣
q`

=
∂

∂u
·
(

Dq`
· ∂ f

∂u

)
where

Dq`
= D‖ û‖ û‖+D⊥‖ û⊥ û‖+D‖⊥ û‖ û⊥+D⊥ û⊥ û⊥, (3.17)

with

D‖ = ∑
n

q2

2m2 π δ

(
ω− k‖v‖−

nω±c
γ

)∣∣∣ϑ±n,k

∣∣∣2 ·(k‖u⊥
ωγ

)2

,

D‖⊥ = D⊥‖ = ∑
n

q2

2m2 π δ

(
ω− k‖v‖−

nω±c
γ

)∣∣∣ϑ±n,k

∣∣∣2(k‖u⊥
ωγ

)(
nω±c
ωγ

)
,

D⊥ = ∑
n

q2

2m2 π δ

(
ω− k‖v‖−

nω±c
γ

)∣∣∣ϑ±n,k

∣∣∣2 ·(nω±c
ωγ

)2

, (3.18)

and

ϑ
±
n,k = Jn+1

(Ex− iEy)
2

+ Jn−1
(Ex + iEy)

2
+

u‖
u⊥

Jn E‖. (3.19)

ω±c is the cyclotron frequency with charge sign attached, and k‖ (k⊥) are the wavenum-
bers parallel (perpendicular) to the ambient magnetic field. The argument of the Bessel
functions is k⊥u⊥/ω±c . û‖, û⊥ are unit vectors in the u‖ and u⊥ directions. The sum-
mation in n goes from −∞ to +∞.

The coefficient δB is related to the diffusion coefficient Duu in the u-direction, as
is evident from Eqs. 2.4 and 2.5. Thus we must express Duu in terms of the coefficients
in Eqs. 3.17 and 3.18. We write

∂ f
∂ t

∣∣∣∣
q`

=−∇u ·Γq`, (3.20)

where

−Γq` ≡ D · ∂ f
∂u

.

Then the fluxes in the u‖ and u⊥ directions are

−Γu‖ = D‖
∂ f
∂u‖

+D‖⊥
∂ f

∂u⊥
,

−Γu⊥ = D⊥‖
∂ f
∂u‖

+D⊥
∂ f

∂u⊥
, (3.21)
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from which we obtain the flux vector in the u,θ -space,

Γu = cosθ Γu‖+ sinθ Γu⊥,

Γθ = − sinθ Γu‖+ cosθ Γu⊥. (3.22)

Inserting Γu from Eq. 3.22 into 3.20, using 3.21, and transforming the partial deriva-
tives to u,θ -coordinates, then Eqs. 3.18 and 3.19 give the local quasilinear coefficient
δB,

δB = u2 Duu, (3.23)

where

Duu = cos2
θ D‖+2 cosθ sinθ D‖⊥ + sin2

θ D⊥

= ∑
n

q2

2m2 π δ

(
ω− k‖v‖−

nω±c
γ

)∣∣∣ϑ±n,k

∣∣∣2 [cosθ
k‖u⊥
ωγ

+ sinθ
nω±c
γω

]2

.

The electric field spectrum Ek can be expressed as a function of k‖, since the k⊥ is
chosen to satisfy the wave dispersion relation. Normalization is such that the root
mean square fluctuating electric field is

E2
rms =

∫
d3k

∣∣Ek
∣∣2

=
+∞∫
−∞

dk‖
∣∣∣Ek‖

∣∣∣2 , (3.24)

where |Ek|2 = δ [k⊥− k⊥(k‖)]/(2πk⊥)|Ek‖ |
2. Thus the Duu diffusion coefficient due

to a single component |Ek‖ |
2∆k‖ of the discretized spectrum, representing one of the

previously-discussed ray elements, is

Duu = ∑
n

π q2

2m2

[
cosθ

k‖u⊥
γω

+ sinθ
nωc

γω

]2
γ

|u‖|∣∣∣∣ u‖
u⊥

Jn
Ez

|E|
+

Ex + iEy

2|E|
Jn∓1 +

Ex− iEy

2|E|
Jn±1

∣∣∣∣2∣∣∣Ek‖

∣∣∣2 ∆k‖ δ
(
k‖− k‖ res

)
, (3.25)

where

δ
(
k‖− k‖ res

)
=


1

∆k‖
, k‖ ⊂ ∆k‖,

0, k‖ 6⊂ ∆k‖,
(3.26)

k‖ res =
ω−nωc/γ

v‖
, (3.27)

ωc = |ω±c |, and the argument of the Bessel functions is k⊥u⊥/ωc. The upper signs in
the Bessel function indices refer to ions and the lower signs to electrons. We have used
J−n(−z) = Jn(z). The summation over n remains from −∞ to +∞.
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3.3.2 The δB0 coefficient
We form the bounce/volume average of δB according to Eq. 3.24, using Eqs. 3.23 and
3.25 through 3.27. We need to relate the power flowing through a ray element to the rf
electric field at the ray element. The energy flux flowing in the poloidal plane along a
ray is denoted

Spol =
δP

δw2πR
≡ S̃pol

∣∣∣Ek‖

∣∣∣2 ∆k‖. (3.28)

S̃pol is defined as the energy flux [27] in the poloidal plane corresponding to unit
|Ek‖ |

2∆k‖,

S̃pol =
1

16π
Vgpol

[∣∣∣Bk‖

∣∣∣2 +E∗k‖ ·
∂ (ωKh)

∂ω
·Ek‖

]/∣∣∣Ek‖

∣∣∣2 , (3.29)

Bk‖ = n×Ek‖ , n = k c/ω , and Vgpol is the ray group velocity projected onto the poloidal

(i.e., locally meridional) plane. S̃pol is passed from the ray-tracing code. δP is power
flowing in the ray channel of width δw in the poloidal plane (δw is measured perpen-
dicular to Spol, and it will cancel out of the calculation). The channel may be considered
to be toroidally uniform. We also define δ B̃ according to

δB≡ δ B̃
∣∣∣Ek‖

∣∣∣2 =
δ B̃
S̃pol

δP
2πRδwδk‖

. (3.30)

Then we write ∫ ′ d`B

|v‖|
δB =

∫ ′ d`p

|v‖|
(
|B|/Bp

)
δB

∼=
Spol

SΨ

δw
|B|
Bp

δB
|v‖|

∣∣∣∣ u=u0
sin2 θ=ψ sin2 θ0

, (3.31)

where SΨ is flux in ∇Ψ-direction so that (Spol/SΨ)δw is the poloidal extent of the ray.
Forming δB0 according to Eq. 3.15 gives

δB0 =

∫
ray element

Rdφ d`Ψ d`p

∆V
v‖0

∮ ′ d`B

|v‖|
δB

≈ δ`Ψ

∆`Ψ

v‖0
∮ ′ d`B

|v‖|
δB, (3.32)

where d`Ψ = dΨ/|∇Ψ| is a distance increment perpendicular to the flux surface Ψ,
∆`Ψ = ∆Ψ/|∇Ψ| is the width perpendicular to the flux surface of the volume element
∆V which contains the ray element, ∆Ψ is the range in Ψ of ∆V , δ`Ψ is the extent of
the ray element in the ∇Ψ direction,

δ`Ψ = δ spol ·
Spol

SΨ

, (3.33)
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and δ spol is the ray element length in the poloidal plane. From Eqs. 3.28 through 3.33
and 2.12, we obtain

δB0 (u0,θ0) =
δ spol

2π ∆Ψ

cosθ0(
1−ψ sin2

θ0
)1/2 |B|

B̃
S̃pol

∆P
∆k‖

. (3.34)

The magnetic field |B| and ψ are evaluated at θpol of the ray, and the coordinates u,θ

in δ B̃ are evaluated according to Eq. 2.12. This expression is non-zero within narrow
strips in u0,θ0-space such that the resonance condition Eq. 3.27 has k‖ res ⊂ ∆k.

Evaluation of the δB0 for the Landau/transit-time interaction (n = 0) and the cy-
clotron damping situations (n 6= 0) is essentially identical except for the shape of the
resonance strips. We consider these cases separately.

3.3.3 Landau/transit-time interaction (n = 0)
The resonance strip is defined by the range of parallel refractive index n‖1 ≡ n‖0−
∆n‖/2 to n‖2 = n‖0 + ∆n‖/2, where n‖0 corresponds to the center of the n‖ ≡ k‖c/ω-
range of a given ray element. The zeroth harmonic (n = 0) resonance condition, ω −
k‖v‖ = 0, becomes a hyperbola in momentum space at the local θpol of the ray element,

(
n2
‖−1

) u2
‖

c2 −
u2
⊥

c2 = 1. (3.35)

Thus the range of resonance strip (n‖2 > n‖1 > 1) is as shown schematically in Fig. 3.2(a).
For n‖ ≤ 1, there is no resonance.

The code solves the FP equation on a u0,θ0-grid. For each value of u = u0 on
the grid, the θ0-grid values corresponding to values θ in the resonance strip defined
in Fig. 3.2(a) are determined, the values of δB0 are computed according to Eq. 3.34,
and the additional quasilinear coefficients are obtained with Eq. 3.16. Values of δB0
corresponding to θ -grid points for which the surrounding θ -range from θ − δθ/2 to
θ + δθ/2 is not entirely in the resonance range, are weighted accordingly; we thus
obtain θ0-grid independence in the limit of small ∆n‖.

The rf power absorption associated with the ray element δP is given by the flux
surface average of the power density due to a ray element 〈δPRF〉 multiplied by the
value of the flux surface ∆V :

δP = 〈δPRF〉 ·∆V,

where in accord with Eq. 2.19,

〈δPRF〉=
∫

d3u0
∣∣v‖0∣∣τB (γ0−1)mc2 ∂ f0

∂ t

∣∣∣∣
RF

/∮ ′
d`B/ψ . (3.36)

The term |v‖0|τB ∂ f0/∂ t|RF is given by Eqs. 2.14 and 2.15 with coefficients given by
Eqs. 3.34 and 3.16. The velocity integral over the ∂/∂θ0 H0-term integrates to zero.
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Figure 3.2: Resonance regions in local momentum-per-mass space are between n‖1
and n‖2 curves. Three cases are shown: (a) Landau/transit time interaction (n = 0),
(b) cyclotron interaction with ω > nωc, and (c) cyclotron interaction with ω < nωc.
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3.3.4 Cyclotron interaction (n 6= 0)

The resonance strip configurations are more complicated for the n 6= 0 cyclotron inter-
actions [26]. Figures 3.2(b) and (c) show the two different situations at the ray element,
ω ≥ nωc and ω < nωc. In each case the resonance curve Eq. 3.14 on a specific value
of n‖ = k‖c/ω is an ellipse in u‖,u⊥-space:(

u‖−u‖0
)2 +u2

⊥/
(

1−n2
‖

)
= u2

0, (3.37)

where

u‖0
c

=
nωc

ω

n‖
1−n2

‖
,

u2
0

c2 =
{(nωc

ω

)2
−
(

1−n2
‖

)}/(
1−n2

‖

)2
.

u2
0 is greater than zero if (nωc/ω)2 > (1− n2

‖). This is an ellipse of ellipticity (1−
n2
‖)
−1/2. The parallel refractive index of the launched cyclotron waves is less than

1. From Eq. 3.37, the resonance ellipse intercepts the u‖ = 0 at the two values u‖1
and u‖2. Figure 3.3 shows schematically the general nature of these intercept values,
various values of n‖.

Let us first consider the ω ≥ nωc-case corresponding to ray elements which are
outboard, i.e., on the low magnetic field side, of the resonance surface at ω = nωc. For
this case the resonance curves for two neighboring refractive indices n‖1 and n‖2 do
not overlap, as is evident from Fig. 3.3 and shown in Fig. 3.2(b). for each value of
u0 on the mesh, one determines the ray of θ -mesh points (and consequently θ0-mesh
points) which fall into the resonance region in u‖,u⊥-space determined by n‖1 and n‖2.
Again, as in the n = 0 case, coefficients are determined according to Eqs. 3.34 and
3.16, and the diffusion coefficients if they are evaluated to θ -points near the edge of
the resonance region.

For the ω < nωc case, as depicted in Figs. 3.2(c) and 3.3, the resonance curves for
neighboring n‖ overlap. This is not difficult to account for when finding the θ -range
for each u = u0, since the curves always overlap at u‖ = 0, (u⊥/c)2 = (nωc/ω)2− 1.
For u less than this value of u⊥, the order of intersection of the resonance curves with
increasing θ is: first, the k‖2 -curve, then the k‖1 -curve, assuming k‖2 > k‖10. For greater
u, the order of intersection reversed. The treatment is otherwise like the above ω > nωc-
case.

The power absorption by cyclotron damping is calculated as above in the manner of
the Landau/TTMP interaction, according to Eq. 3.36 with δB0, etc., given by Eqs. 3.34,
3.16, 3.23, and 3.25.

The code iterates between calculation of the rf quasilinear coefficients, the con-
sistent distorted distribution functions, and the damping of the ray energy along the
ray channels, to achieve self-consistent non-Maxwellian distributions and damping of
the rf.
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Figure 3.3: The minimum and maximum u‖ on the resonance ellipse (n 6= 0) for the cy-
clotron layer (ω = nωc) at Rc, with the assumption of an R−1 variation of the magnetic
field. Aspect ratio is 2.5.
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3.4 Bounce-averaged neutral beam source
One of the earliest 2D-in-velocity space, bounce-averaged, finite difference FP codes
was FPP, which was constructed by Goldston [28]. Combined with a pencil-beam
neutral beam deposition code [28], 2D solutions for the fast ion distribution function
were obtained on a radial array of flux surfaces. In the spirit of FPP, CQL3D has been
combined with the NFREYA [29, 30] Monte Carlo, neutral beam deposition model, to
produce ion distribution functions modified by neutral beam injection (NBI). Running
CQL3D in multi-species mode, the NBI driven current can then be calculated directly
from the toroidal velocity moments of the ions and the “dragged-along” electrons. In
this section, we describe the function of a DIII–D fast ion source, 〈〈S〉〉 in Eq. 2.13 for
ions, from the ion birth points obtained by the Monte Carlo deposition code.

The birth points at given R,Z in the plasma cross-section are statistical in nature.
Birth points for each of the particles (subscripted in the following by j), for each of
several beam energies, are weighted by a particle source rate Wj which reflects the ge-
ometry and physics considerations in the neutral beam injection code. The net bounce-
averaged source 〈〈S〉〉 will be the sum of all the individual birth point sources 〈〈δS j〉〉,
weighted by the Wj:

〈〈S〉〉v0
= ∑

j
Wj 〈〈δS j〉〉. (3.38)

The overbars indicate a further averaging, to be discussed below, over the volume ele-
ment ∆Vj associated with plasma radius ρ j and over the computational velocity space
increments associated with velocity v0 j. Relativistic effects are ignored.

Suppose a particle is born at poloidal angle θp j on a flux surface Ψ j, with velocity
v j. The birth position can also be specified as `p j, the poloidal length on the flux
surface, and `Ψ j which is distance across the flux surface (d`Ψ ≡ dΨ/|∇Ψ|). We write
δS j,

δS j (r,v) =
δ (`Ψ− `Ψ j)δ (`p− `p j)

2πR
δ
(
v− v j

)
, (3.39)

such that ∫
d3v

∫
d3xδS j = 1. (3.40)

The source is taken to be toroidally symmetric. Bounce-averaging gives〈〈
δS j
〉〉

(v0) =
1

τb(v0,Ψ)

∮ ′ d`B

|v‖|
δ (`Ψ− `Ψ j)δ (`p− `p j)δ [v(v0)− v j]

2πR

=
|B0|

v‖0τB
δ (Ψ−Ψ j)

δ (v0− v0 j)δ (η0−η0 j)
(2π)2v2

0
, (3.41)

where η0 = cosθ0, and we have used δ [v(v0)−v j] = δ (v0−v0 j)δ (η0−η0 j)/[2πv2
0×

|(B/B0)(v‖0/v)|], δ (`Ψ− `Ψ j) = |∇Ψ|δ (Ψ−Ψ j), and Eq. 2.12. B0 is the minimum
magnetic field on the flux surface. We further average over the velocity space mesh
element that v0 falls into, 2π v2

0 j ∆η0 ∆v0, and the volume ∆Vj surrounding the nominal
flux surface, giving

〈〈δS〉〉v0
=

1
2π v2

0 ∆v0 ∆η0 ∆V

∫
2π v

′2
0 dv′0 dη

′
0

∫
d3x′ 〈〈δS〉〉v′0
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=
1

2π v2
0 ∆v0 ∆η0

B0

2π ∆Ψv‖0 τB
. (3.42)

in the v0-volume element surrounding v0 j and in ∆Vj, and zero outside. The net source
rate is then found using Eq. 3.38.

3.5 Synchrotron radiation
Synchrotron radiation by electrons can be an important energy loss mechanism in a
tokamak reactor, particularly in the presence of a nonthermal tail [31, 32]. CQL3D
models thus use the bounce-averaged of the local expression given in Ref. [9]. This
will give an upper bound on radiation losses, since it omits important effects of wall
reflectivity and reabsorption [31, 32].

The local flux in momentum-per-mass space due to synchrotron radiation is

ΓR = α |B|2 γ
2
‖

{
b̂×
(
u× b̂

)
+
|b̂×u|2

γ2
‖ c2

(
b̂ ·u
)

b̂

}
fe, (3.43)

where α = 2/3(e4/m3
ec5γ), γ2

‖ = 1 + u2
‖/c2, and b̂ = B/|B| is a unit vector parallel to

B. From Eqs. 2.4 and 2.5, Eq. 3.43 gives the advective FP coefficients A = u2Γu/ fe
and D = usinθ Γθ / fe, where Γu,Γθ are the components of ΓR in the u,θ -coordinate
system. This gives

A = α |B|2 γ
2
‖ u3 sin2

θ

{
1+

u2

γ2
‖ c2 cos2

θ0

}
,

(3.44)

D = α |B|2 γ
2
‖ u2 sin2

θ cosθ

{
1− u2

γ2
‖ c2 sin2

θ

}
.

The bounce-averaged coefficients are obtained with Eq. 2.16,

A0 = α λ |B|20 u3 sin2
θ0

{(
1+

2u2

c2

)〈〈
ψ

3〉〉− 2u2

c2 sin2
θ0
〈〈

ψ
4〉〉} ,

(3.45)

D0 = α λ |B|20 u2 sin2
θ0

cosθ0

{
γ

2 〈〈
ψ

2〉〉−(1+
3u2

c2

)
sin2

θ0
〈〈

ψ
3〉〉

+2
u2

c2 sin4
θ0
〈〈

ψ
4〉〉} .

The bounce averages of ψn, which depend on pitch angle θ0 and radius, are obtained
by numerical integration according to Eq. 2.11.
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3.6 Simplified lower hybrid diffusion coefficient
The CQL3D code can be run in single flux surface mode. A simplified diffusion op-
erator is available, enabling easy simulation of lower hybrid (LH) current drive and
comparison with past 2D FP simulations [23, 24, 33] of this process.

The simplified LH operator, given in terms of a flux in u-space parallel to the mag-
netic field, is

Γ =−D‖
∂ f
∂u‖

û‖, (3.46)

where D‖ is specified. We transfer Γ to the u,θ -coordinate system and compare with
Eqs. 2.4 and 2.5 to obtain the FP coefficient,

B = u2 cos2
θ D‖. (3.47)

The coefficient B0 = λ 〈B〉 for the bounce-averaged equation is formed using a numer-
ical bounce-averaged of B; the remaining nonzero coefficients C0, E0, and F0 are given
by Eq. 3.16.

The B-coefficient is specified as a function of v‖. It is constant and nonzero in the
“resonance” region v‖1 to v‖2, except for a smooth “turn-on” from zero to maximum
value, with shape 1/2 [1− cos(π

∣∣v‖− v‖i
∣∣/δv‖)], i equals 1 and 2, over the interval of

width δv‖ at each edge of the resonance region. The diffusion coefficient is specified
as a multiplier of the collisional diffusion coefficient Dcoll ≡ vT 2

e
/τei, v2

Te
= Te/me,

τei = v3
Te

m2
e/(4πne e4 lnΛ). This gives the value of D‖ at major radius R = R0, where

R0 is the major radius (center) of a flux surface. The (v‖1,v‖2) width of the resonant
region is given at R0 and may be constant over the flux surface, or may vary as R/R0
thus keeping k‖R approximately constant as expected for a lowest order treatment of
toroidal effects on the input LH spectrum.

3.7 Radial diffusion operator
Diffusion of electrons, particularly of a fast electron tail in low-density rf current drive
experiments, may play an important role in tokamaks. If the radial diffusion coefficient
increases with velocity, such as is expected for stochastic magnetic field induced trans-
port, [34], then this effect may significantly limit radial localization of rf current drive.
Alternatively, if the radial diffusion effects are more uniform in velocity space, such as
may result from a nonresonant Ẽ×B-diffusion, then the effects on tail-electron trans-
port will be less severe. Effects of stochastic magnetic field-induced transport have
been previously examined computationally with a 2D, (r, v)-FP code which modeled
radial diffusion of a pitch angle-averaged distribution of electrons [35]; application
was made to modeling Alcator observations of soft-x–ray tail temperatures which were
found to be independent of the X-ray diagnostic tangent radius in the plasma [36].
The present generation of 3D codes [2, 3, 4, 5, 6, 7] examines radial diffusion of the
2D-in-momentum-space distributions.

The radial operator 〈R〉 in CQL3D contains both a diffusion term Dρρ and a con-
vective velocity Vρ term. The Vρ term is chosen to balance the diffusion term so that a
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given plasma density profile is maintained. Dρρ and Vρ may be general functions of u
and ρ , although negative Dρρ presumably will present numerical difficulties. The form
of 〈R〉 is chosen to conserve particles. Also, we consider two general categories of ra-
dial diffusion: one at constant energy E and magnetic moment µ , following Hammett
[5], as may be expected due to nonclassical transport by electromagnetic turbulence at
frequencies below the electron cyclotron frequency; and the second at constant equa-
torial plane pitch angle θ0 [2, 3], which is somewhat less physically motivated.

We consider the radial transport of the quantity λ f0/
∮ ′(d`B/ψ) which as discussed

previously is the flux surface average of particles in d3u0 at θpol = 0. The operator
conserves flux surface average density 〈n〉 =

∫
d3u0/

∮ ′(d`B/ψ). For noncircular ge-
ometry, we obtain

∂ (λ f0)
∂ t

= 〈〈R〉〉+ . . . ,

〈〈R〉〉 =
∣∣∣∣u‖0B0

∣∣∣∣C0
∮ ′ d`B

Hρ

∂

∂ρ

∣∣∣∣
C1,C2

Hρ

∣∣∣∣ B0

u‖0

∣∣∣∣C0

·

{
Dρρ

∂

∂ρ

∣∣∣∣
C1,C2

[
λ f0∮ ′(d`B/ψ)

]
+Vρ

λ∮ ′(d`B/ψ)
f0

}
,

where

(C0,C1,C2) =
{

(1,E,u) for constant E,µ diffusion,
(0,µ0,θ0) for constant u0,θ0 diffusion. (3.48)

As before, B0 is the minimum magnetic field on a flux surface. H is a quantity
previously used in the ONETWO transport code [37] containing the effects of noncir-
cular geometry [16]; it has the value 1 for circular concentric flux surfaces. The quan-
tity u‖0/B0 appears in the Jacobian of transformation from u0,θ0- to E,µ-coordinates,
d3u0 = |B0/u‖0|(2πγ/m2)dE du. In forming the quantity ∂ 〈n〉/∂ t by integrating over
d3u0, the u0‖/B0 term in Eq. 3.48 enables the interchange of order of integration and
differentiation (∂/∂ρ)|E,u, giving the result that the rate of change of particles between
two flux surfaces can be written as the difference between the two boundary surface
terms, i.e., the equation is in conservative form.

The numerical implementation of the two different radial derivative forms in Eq. 3.48
is accomplished through the simple artifice of varying the θ0-grid as a function of ra-
dius ρ . For the constant v0,θ0-diffusion, the θ0-grid is constant from flux surface to
flux surface, whereas for the constant E µ-diffusion, the θ0-grid is chosen to vary with
ρ so as to conserve µ at corresponding θ0-grid points. Radial derivatives are formed
between corresponding θ0-grid points.
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Chapter 4

NUMERICAL SOLUTION OF
EQUATIONS AND MODES OF
USAGE

CQL3D is a general multispecies, noncircular plasma, time-dependent, nonlinear col-
lisions, radial transport Fokker-Planck code. Generally, not all of the features are used
simultaneously due to the complexity of the resulting cases, although its application
as a full transport code will likely increase. Here we describe some numerical aspects
which pertain to the modes of usage of the code.

Numerical solution of the equations for the 2D momentum-space time-advancement
of the distributions on each radial flux surface is usually performed by a straightforward
Guassian elimination of the implicitly-differenced FP equations. The coefficients in the
FP equation may be determined from the distribution functions at the beginning of the
time-step, or they may be held constant at values in accord with the initial Maxwellian
distributions. The method of time-advancement, discussed in Refs. [1], [8], and [19],
is usually numerically stable for arbitrary time step δ t. If δ t is shorter than the time
for evolution of the distribution function due to, for example collisions or rf, then the
time-evolution of the distributions can be followed. Alternatively, if the FP coefficients
are held constant and a steady-state distribution exists, then taking δ t longer than the
longest time scale in the problem enables a single “time-advancement” step directly
to the steady-state solution. Another situation occurs when a steady-state is desired
with certain of the FP coefficients evolved consistent with the non-Maxwellian state of
the distributions, for example, in rf simulations where the damping of the ray energy
depends strongly on distortion of distributions and the FP coefficients must be recom-
puted for each new state of the ray energy deposition. Then long δ t time steps give an
iterative approach to the rf steady-state.

As mentioned above, certain of the FP coefficients can be held fixed, depending for
example on the initial Maxwellian distribution. This is necessary if a steady-state is
desired in cases where there is no radial transport and a heat source is turned on. Oth-
erwise the plasma would heat up indefinitely. In cases of rf or dc electric field in which
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the electron distribution is evolved, it is traditional [38, 23, 24] to linearize the elec-
tron collisional FP operator by taking the g and h Rosenbluth potentials in Eqs. 3.12
and 3.13 to be entirely due to the initial Maxwellian distributions. A steady-state is
achieved whereby added heat from the rf or dc electric field passes mainly to the back-
ground Maxwellian “heat bath.” This approximation is quite good for cases when only
tail electron dynamics are important, and where electron-electron slowing down ef-
fects on the tail electrons dominate transport effects, but for situations such as in the
calculation of Ohmic conductivity where a significant portion of electron momentum is
carried by thermal particles, then the non-conservation of electron momentum during
electron-electron collisions implicit in this linearization gives a poor approximation,
and leads to a factor∼2.0 reduction in Ohmic conductivity. We have therefore adopted
a “partially-nonlinear” mode of operation [33] to prevent the thermal runaway but give
momentum conservation in electron-electron collisions: the P0-Legendre component
in the expansion of the evolved electron distribution in Eqs. 3.12 and 3.13 is ignored.
Instead we use the P0-component corresponding to the initial Maxwellian. The remain-
ing Pm-components in Eqs. 3.12 and 3.13 are retained up to a maximum order m ∼5
required for convergence of the results.

If the problem to be solved includes the effects of radial transport, then the code
may be run to a steady-state in the “linearized,” “partially-nonlinear,” or nonlinear
modes.

There are several choices of boundary conditions enabling a steady-state in the
presence of particle sources or sinks due to, for example, fast ions from neutral beams
or electron runaway beyond the maximum energy on the grid. The boundary condi-
tions at the high energy edge of the grid are either zero-flux in momentum-space, or
a streaming condition on the distribution permitting a smooth flow of the particles off
the edge of the grid. At velocity v = 0, the boundary condition can be chosen to be
zero-velocity-flux which does not generally permit a steady-state; the distribution can
be held fixed at v = 0 which leads to a steady-state but the species density may vary
from its initial value; or, the distribution can be renormalized to its initial density after
each time-advancement step, which leads to a steady-state at the initial density.

Radial transport has been incorporated, building on the previous state of the code in
which individual distributions were computed on a radial array of flux surfaces [20, 25]
but there was no direct radial coupling of the difference equations. This is readily ac-
complished by an alternating-direction-implicit (ADI) time advancement scheme [17]:

λ ( f n+1/2− f n)
δ t/2

= C
(

f n+1/2
)

+Q
(

f n+1/2
)

+S +R( f n) , (4.1)

λ ( f n+1− f n+1/2)
δ t/2

= C
(

f n+1/2
)

+Q
(

f n+1/2
)

+S +R
(

f n+1) , (4.2)

where f n represents the distribution function at time step n. Previously we had solved
the implicit 2D in momentum-space Eq. 4.1 without R. Adding R in 4.1 amounts to
a further source term in this equation. The implicit portion of Eq. 4.2 is 1D in radius
and the finite difference equations are readily solved by tridiagonal recursive formulas.
We should mention that our first solutions to the full 3D problem utilized a splitting
algorithm, which amounted to solving Eq. 4.1 without the explicit R( f n) term and then
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Eq. 4.2 without the explicit C +Q+S-term (and with δ t/2→ δ t). Although each step
of this scheme was unconditionally stable, short time-steps were required, of order the
shortest collision time for the non-Maxwellian portion of the distribution function, in
order to avoid oscillations from and momentum- to radial-equation solution. An rf run
which took a half-hour of CRAY time without radial diffusion took ten hours to get to
steady-state with radial diffusion. Giruzzi found [39] with the slightly more compli-
cated ADI scheme that much longer time steps could be taken, and that in achieving a
steady state the radial transport only added a 30% increase in execution time over the
rf case with no radial diffusion.
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Chapter 5

BENCHMARK RUNS AND
ILLUSTRATIVE TRANSPORT
CASE

This section outlines three benchmark tests of the code against known results, and gives
an example of transport effects on runaway electrons in tokamaks.

5.1 Neutral beam current drive with multispecies oper-
ation of code

The NFREYA [36, 37] Monte Carlo neutral beam deposition code was utilized to pro-
vide a source of fast ions in an ITER-like plasma [40]. Figure 4(a) shows the tokamak
poloidal cross-section, with representative birth points due to three vertically displaced
1.3 MeV deuterium neutral beams injected into a plasma with central electron den-
sity ne0 = 1.1×1014 cm3. Figure 4(b) gives contours of the resulting steady-state 2D
deuterium ion velocity distribution at a point near the plasma center. The electron com-
pensating current due to slowing down of the fast ions on the electrons was computed
by two means: (1) running CQL3D in multispecies mode, with both the deuterium and
the electrons being simultaneously time-advanced, with no radial transport; the elec-
tron current density Je is then directly calculated by taking the v‖-moment in velocity
space of the steady-state electron distribution; (2) alternatively, the compensating elec-
tron current is obtained from analytic estimates made using formulas by Cordey and
Start [41]. Table\:I compares these currents in terms of the fractional reduction of the
net beam-driven current density JBD = JD + Je divided by the fast ion current density
JD. As a function of inverse aspect ratio, the analytically-obtained current density ex-
ceeds the computational result by 1.5% near ε ' 0.0 to 6% at ε ' 0.4. This good
agreement confirms the operation of the electron-ion collision dynamics and trapping
effects, with the code working in multispecies mode.
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Figure 5.1: (a) Selected birth points of fast ions in ITER-like situation, and (b) the
steady-state deuterium distribution at ρ/a = 0.085. unorm corresponds to 1800 keV
deuterium ions.

Table 5.1:
COMPARISON OF ANALYTIC AND COMPUTATIONAL ESTIMATES OF JBD/JD

Inverse Aspect Ratio (ε) Analytic* Computational

0.0374 0.69 0.68
0.0544 0.73 0.70
0.079 0.76 0.73
0.019 0.79 0.76
0.145 0.82 0.79
0.190 0.86 0.81
0.244 0.88 0.83
0.311 0.90 0.85
0.393 0.93 0.87

*Cordey-Start results, Phys. Fluids 23 (1980) 1475.
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5.2 Ohmic resistivity as a function of inverse aspect ra-
tio

Computation of Ohmic resistivity as a function of inverse aspect ratio ε tests the
dynamics of electron-ion collisions, momentum conservation properties of electron-
electron collisions, and trapping effects, against previous well known banana regime
results. The resistivity η in the code is obtained as an area average of the toroidal
current density between neighboring flux surfaces, divided by the same average of
the electric field E0 at the plasma major radius, η = Ē0/ j̄. We ran the code in the
previously-discussed “partially-nonlinear” mode. Figure 5 (cf., Ref. [8]) compares the
ratio of η normalized to the Spitzer value to several formulas in the literature, both for
high and low ε limits. As ε → 0, the code value of η/ηSpitzer is 1.03. The code results
follow closely the ε variations obtained by Coppi and Sigmar [42] and Connor et al.
[43] at low ε and by Connor et al. [43] at high ε . This further confirms the accuracy of
the collision model in CQL3D.

5.3 First harmonic electron cyclotron damping
The present major application of the code is for determination of rf absorption and cur-
rent drive efficiency. Figure 5.3 compares the damping calculated with CQL3D using
relativistic Maxwellian distributions, such as are obtained at low rf power, with results
calculated by a linear, relativistic, electron cyclotron wave dispersion code [44]. This
is for a case of X–mode radiation launched toward the magnetic axis from the inboard
side of a present-day tokamak, at an angle approximately 15 degrees from perpen-
dicular. Data required to calculate the quasilinear diffusion coefficients according to
Eqs. 3.23, 3.25, 3.34, and Section 3.3.4 has been passed from the TORAY ray-tracing
code [45, 46]. The absorption coefficient giving the damping per unit length along
the ray is calculated from the rf power absorption expression Eq. 3.36. The excellent
agreement, generally within 3% to 4%, verifies most aspects of rf calculation. The
minor numerical difficulty appearing toward the end of the ray trajectory at distance
S ≈ 80 cm occurs near the cyclotron resonance layer ω = ωc in a region where most
of the rf power is already absorbed (in this case ' 99% absorbed). The difficulty is
associated with the first term in square brackets in Eq. 3.25 which together with the
resonance condition Eq. 3.27 is proportional to 1/(1−ωc/ωγ)2.

5.4 Transport effects on runaway electrons
We show results of a typical application of the radial transport model to the problem
of electron runaway. Since the slowing down rate for electrons above the thermal
energy is proportional to 1/u3, eventually an energy is reached where radial transport
dominates, since the transport time becomes less than the slowing down time. For
densities ∼ 1013/cm3, and assuming a radial transport rate independent of energy, this
occurs at energies of order 100 keV for present-day tokamaks. For dc electric field
runaway electrons, the only limit on this buildup in the tokamak will be radial transport,

30



Figure 5.2: Comparison of Ohmic resistivity η from CQL3D to various analytic esti-
mates, as a function of inverse aspect ratio ε .
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Figure 5.3: Comparison of electron cyclotron absorption coefficient from CQL3D to
results from a relativistic dispersion relation solver [44], as a function of distance
along a ray.

32



Figure 5.4: Transport effects of the electron distribution tail, in an Ohmic discharge.
Curves on left are for no transport, and curves on right include effects of a radial dif-
fusion transport coefficient Dρρ = 1.0 m2/sec. unorm corresponds to 250 keV electrons.

or the termination of the discharge. Thus transport effects can be expected to dominate
the dynamics of runaways. Figure 5.4 shows results from CQL3D confirming this
expectation.

The left hand side of the figure shows results with no radial transport, and the right
side is with radial transport. This is for an ne0 = 1013 cm−3, Zeff = 1., central temper-
ature Te0 = 1 keV, one-turn voltage Vφ = 2.5 volts, R0 = 1.67 m, Ohmic discharge
giving 447 kA current in the “no transport”-case and 428 kA with transport. The
diffusion coefficient is a typical value for this type of discharge, Dρρ = 1.0 m2/sec,
and is independent of velocity. The code is run in the previously discussed “partially
nonlinear”-mode, as is appropriate for study of electron tail phenomena.

At the top of Fig. 5.4 we show the electron distributions fe as a function of u, with
pitch angle θ0 as a parameter, at a radius r/a = 0.65 toward the plasma periphery.
Comparing the left and right of the diagram, we see that transport raises the tail den-
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sity by two-and-one-half orders of magnitude, a profound effect on the runaways. The
raising of the tail is due to electrons which have transported from the plasma center.
The bottom of Fig. 5.4 compares “runaway electron rates,” actually the rates of elec-
trons streaming off the edge of the grid above energies 250 keV. As we see, transport
depresses these rates at the plasma center, and enhances them toward the plasma edge.
Although these transport modifications of the electron tail will have strong effects on
tail diagnostics such as x–ray of vertical electron cyclotron measurements, there are
not enough tail electrons in this case to significantly modify the current profile.
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Chapter 6

CONCLUSIONS

CQL3D is a multispecies, relativistic, 3D bounce-averaged Fokker-Planck code pro-
viding a general model for auxiliary heating in tokamaks. We have given an analytic
description of each of the terms in the code and outlined how they are numerically im-
plemented. The treatment of the rf quasilinear diffusion and damping terms, which is
a new general approach in Fokker-Planck codes, incorporates in a unified fashion the
Landau/transit-time and cyclotron interactions of rf energy with the tokamak plasma.
A method is given for calculation of fast ion sources from Monte Carlo neutral beam
deposition code results.

The CQL3D code has been benchmarked against several known solutions to the
Fokker-Planck equations. The Ohmic conductivity agrees within 3 percent with ear-
lier calculations in both the low and high inverse aspect ratio ε limits [41, 42], and
provides results in the intermediate ε-regime. This corroborates the electron-electron
and electron-ion Coulomb collision terms. A neutral beam injection scenario was set
up to obtain the fast ion current; the “dragged along” electron current calculated with
the code was compared with analytic expressions [41], giving agreement to 1.5 percent
near ε = 0.0 and to 6 percent at ε = 0.4. This validates multispecies use of the code
and again the electron-electron and electron-ion collision terms. Electron cyclotron
damping on Maxwellian distributions of an electron cyclotron ray was compared with
results from a well-known dispersion relation solver [44], and the two results agree
generally within 3–4 percent. Since CQL3D calculates rf damping in the same way
for non-Maxwellian distributions, and for Landau/transit-time damping, this validates
much of the rf quasilinear/damping calculation. An illustrative electron runaway/radial
transport simulation demonstrates this functionality in the code and indicates the im-
portance of the radial transport process for high energy electrons.

The code is presently coupled to a range of major auxiliary codes: NFREYA
[29, 30] for neutral beam deposition; RAYLH/CURRAY based on Brambilla’s lower
hybrid tracing code [47] and augmented for general noncircular computational equilib-
ria and fast waves [48]; TORAY [45, 46] and TORCH [49] for electron cyclotron rays;
an MHD code for noncircular equilibria; HORACE [50] for electron cyclotron emis-
sion consistent with the nonthermal electron distributions; and an internally-calculated
x–ray spectrum diagnostic based on the bremsstrahlung emission kernel.
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Many generic studies remain to be completed, and new applications can be ex-
pected. Future development of the code will focus on incorporation of a self-consistent
Ampère-Faraday law for the time-dependent toroidal electric field.
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